Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 134-151.DOI: 10.13745/j.esf.2020.1.15
Previous Articles Next Articles
PANG Zhonghe1,2,3(), LUO Ji1,2,3, CHENG Yuanzhi1,2,3, DUAN Zhongfeng4, TIAN Jiao1,2,3, KONG Yanlong1,2,3, LI Yiman1,2,3, HU Shengbiao1,2,3, WANG Jiyang1,2,3
Received:
2019-03-29
Revised:
2019-10-09
Online:
2020-01-20
Published:
2020-01-20
CLC Number:
PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151.
因素集C | 所代表的指标 |
---|---|
C1 | 大地热流值/(mW·m-2) |
C2 | 地温梯度/(℃·km-1) |
C3 | 热储岩性 |
C4 | 居里面埋深/km |
C5 | 壳内低速高导层埋深/km |
C6 | 火山岩浆活动 |
C7 | 放射性生热率/(μW·m-3) |
C8 | 构造应力场 |
Table 1 The indicator system for evaluating deep geothermal energy mining conditions
因素集C | 所代表的指标 |
---|---|
C1 | 大地热流值/(mW·m-2) |
C2 | 地温梯度/(℃·km-1) |
C3 | 热储岩性 |
C4 | 居里面埋深/km |
C5 | 壳内低速高导层埋深/km |
C6 | 火山岩浆活动 |
C7 | 放射性生热率/(μW·m-3) |
C8 | 构造应力场 |
指 标 | 评价等级 | ||||
---|---|---|---|---|---|
R1(好) | R2(较好) | R3(中) | R4(较差) | R5(差) | |
大地热流值/(mW·m-2) | 90 | 80 | 70 | 60 | 50 |
地温梯度/(℃·km-1) | 70 | 60 | 50 | 40 | 30 |
热储岩性 | 碳酸盐岩 | 花岗闪长岩 | 花岗岩 | 石英砂岩 | 片麻岩和石英岩 |
居里面埋深/km | 5 | 15 | 25 | 35 | 45 |
壳内低速高导层埋深/km | 5 | 10 | 15 | 20 | 25 |
构造应力 | 张扭性 | 张性 | 扭性 | 压扭性 | 压性 |
火山岩浆活动 | 酸性岩基或大型岩浆囊 | 酸性-中性岩株 | 基性岩株 | 基性岩墙 | 基性岩脉 |
放射性生热率/(μW·m-3) | 5 | 4 | 3 | 2 | 1 |
Table 2 List of evaluation levels assigned to mining condition indices
指 标 | 评价等级 | ||||
---|---|---|---|---|---|
R1(好) | R2(较好) | R3(中) | R4(较差) | R5(差) | |
大地热流值/(mW·m-2) | 90 | 80 | 70 | 60 | 50 |
地温梯度/(℃·km-1) | 70 | 60 | 50 | 40 | 30 |
热储岩性 | 碳酸盐岩 | 花岗闪长岩 | 花岗岩 | 石英砂岩 | 片麻岩和石英岩 |
居里面埋深/km | 5 | 15 | 25 | 35 | 45 |
壳内低速高导层埋深/km | 5 | 10 | 15 | 20 | 25 |
构造应力 | 张扭性 | 张性 | 扭性 | 压扭性 | 压性 |
火山岩浆活动 | 酸性岩基或大型岩浆囊 | 酸性-中性岩株 | 基性岩株 | 基性岩墙 | 基性岩脉 |
放射性生热率/(μW·m-3) | 5 | 4 | 3 | 2 | 1 |
指标 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
C1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
C2 | 1/2 | 1 | 2 | 3 | 3 | 4 | 5 | 6 |
C3 | 1/3 | 1/2 | 1 | 2 | 2 | 3 | 4 | 5 |
C4 | 1/4 | 1/3 | 1/2 | 1 | 1 | 2 | 3 | 4 |
C5 | 1/4 | 1/3 | 1/2 | 1 | 1 | 2 | 3 | 4 |
C6 | 1/5 | 1/4 | 1/3 | 1/2 | 1/2 | 1 | 2 | 3 |
C7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/3 | 1/2 | 1 | 2 |
C8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/4 | 1/3 | 1/2 | 1 |
Table 3 Index weighted evaluation matrix
指标 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
C1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
C2 | 1/2 | 1 | 2 | 3 | 3 | 4 | 5 | 6 |
C3 | 1/3 | 1/2 | 1 | 2 | 2 | 3 | 4 | 5 |
C4 | 1/4 | 1/3 | 1/2 | 1 | 1 | 2 | 3 | 4 |
C5 | 1/4 | 1/3 | 1/2 | 1 | 1 | 2 | 3 | 4 |
C6 | 1/5 | 1/4 | 1/3 | 1/2 | 1/2 | 1 | 2 | 3 |
C7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/3 | 1/2 | 1 | 2 |
C8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/4 | 1/3 | 1/2 | 1 |
评价指标 | 深层地热能初选评价区 | ||||||||
---|---|---|---|---|---|---|---|---|---|
吉林 长白山 | 汾渭 地堑 | 广东 阳江盆地 | 西藏 南北地堑系 | 青海 共和盆地 | 雷琼 火山区 | 松辽 盆地 | 滇西腾冲 火山区 | 华北 中东部 | |
大地热流值/(mW·m-2) | 75 | 70 | 75 | 107 | 102 | 67 | 70 | 91 | 70 |
地温梯度/(℃·km-1) | 28 | 32 | 42 | 45 | 41 | 45 | 37 | 45 | 35 |
热储岩性 | 花岗岩 | 变质岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 碳酸盐岩 |
居里面埋深/km | 20 | 20 | 25 | 20 | 22 | 20 | 17 | 18 | 19 |
壳内低速高导层埋深/km | 10 | 20 | 25 | 5 | 10 | 15 | 17 | 10 | 20 |
构造应力 | 张扭性 | 张性 | 张扭性 | 张性 | 压扭性 | 张性 | 张扭性 | 张扭性 | 张扭性 |
火山岩浆活动 | 全新世 | 前第四纪 | 前第四纪 | 中新世 | 新生代 | 全新世 | 白垩纪 | 全新世 | 中新世 |
放射性生热率/(μW·m-3) | 2.5~3.0 | 1.5 | 5.8 | 3.5~5.4 | 3.0 | 2.8~4.9 | 1.1 | 1.1~1.7 | 0.6~4.2 |
Table 4 Evaluation indices of deep geothermal energy exploitation conditions in typical areas of China
评价指标 | 深层地热能初选评价区 | ||||||||
---|---|---|---|---|---|---|---|---|---|
吉林 长白山 | 汾渭 地堑 | 广东 阳江盆地 | 西藏 南北地堑系 | 青海 共和盆地 | 雷琼 火山区 | 松辽 盆地 | 滇西腾冲 火山区 | 华北 中东部 | |
大地热流值/(mW·m-2) | 75 | 70 | 75 | 107 | 102 | 67 | 70 | 91 | 70 |
地温梯度/(℃·km-1) | 28 | 32 | 42 | 45 | 41 | 45 | 37 | 45 | 35 |
热储岩性 | 花岗岩 | 变质岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 花岗岩 | 碳酸盐岩 |
居里面埋深/km | 20 | 20 | 25 | 20 | 22 | 20 | 17 | 18 | 19 |
壳内低速高导层埋深/km | 10 | 20 | 25 | 5 | 10 | 15 | 17 | 10 | 20 |
构造应力 | 张扭性 | 张性 | 张扭性 | 张性 | 压扭性 | 张性 | 张扭性 | 张扭性 | 张扭性 |
火山岩浆活动 | 全新世 | 前第四纪 | 前第四纪 | 中新世 | 新生代 | 全新世 | 白垩纪 | 全新世 | 中新世 |
放射性生热率/(μW·m-3) | 2.5~3.0 | 1.5 | 5.8 | 3.5~5.4 | 3.0 | 2.8~4.9 | 1.1 | 1.1~1.7 | 0.6~4.2 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0.5 | 0.5 | 0 | 0 | 5.94 | ||||||
C2 | 0 | 0 | 0 | 0 | 1 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0.2 | 0.8 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.086 | 0.273 | 0.389 | 0.031 | 0.222 |
Table 5 Evaluation index membership degrees and comprehensive evaluation scores for Changbaishan, Jilin
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0.5 | 0.5 | 0 | 0 | 5.94 | ||||||
C2 | 0 | 0 | 0 | 0 | 1 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0.2 | 0.8 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.086 | 0.273 | 0.389 | 0.031 | 0.222 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 4.90 | ||||||
C2 | 0 | 0 | 0 | 0.2 | 0.8 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.857 | 0.143 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0 | 1 | ||||||||
C7 | 0 | 0 | 0 | 0.333 | 0.667 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.000 | 0.047 | 0.621 | 0.071 | 0.263 |
Table 6 Evaluation index membership degrees and comprehensive evaluation scores for the Fenwei Graben
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 4.90 | ||||||
C2 | 0 | 0 | 0 | 0.2 | 0.8 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.857 | 0.143 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0 | 1 | ||||||||
C7 | 0 | 0 | 0 | 0.333 | 0.667 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.000 | 0.047 | 0.621 | 0.071 | 0.263 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0.5 | 0.5 | 0 | 0 | 5.66 | ||||||
C2 | 0 | 0 | 0.2 | 0.8 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0 | 1 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.143 | 0.857 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0 | 1 | ||||||||
C7 | 0.167 | 0.833 | 0 | 0 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.007 | 0.193 | 0.485 | 0.257 | 0.059 |
Table 7 Evaluation index membership degrees and comprehensive evaluation scores for the Yangjiang Basin, Guangdong
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0.5 | 0.5 | 0 | 0 | 5.66 | ||||||
C2 | 0 | 0 | 0.2 | 0.8 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0 | 1 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.143 | 0.857 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0 | 1 | ||||||||
C7 | 0.167 | 0.833 | 0 | 0 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.007 | 0.193 | 0.485 | 0.257 | 0.059 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.66 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 1 | 0 | 0 | 0 | 0 | ||||||||
C6 | 0 | 0 | 1 | 0 | 0 | ||||||||
C7 | 0 | 0.333 | 0.667 | 0 | 0 | ||||||||
C8 | 1 | 0 | 0 | 0 | 0 | ||||||||
E | 0.441 | 0.059 | 0.390 | 0.111 | 0.000 |
Table 8 Evaluation index membership degrees and comprehensive evaluation scores for the south-north-trending graben in Tibet
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.66 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 1 | 0 | 0 | 0 | 0 | ||||||||
C6 | 0 | 0 | 1 | 0 | 0 | ||||||||
C7 | 0 | 0.333 | 0.667 | 0 | 0 | ||||||||
C8 | 1 | 0 | 0 | 0 | 0 | ||||||||
E | 0.441 | 0.059 | 0.390 | 0.111 | 0.000 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.01 | ||||||
C2 | 0 | 0 | 0.1 | 0.9 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.3 | 0.7 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 0 | 0 | 0 | 1 | 0 | ||||||||
C7 | 0 | 0 | 0.34 | 0.66 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.348 | 0.094 | 0.275 | 0.285 | 0.000 |
Table 9 Evaluation index membership degrees and comprehensive evaluation scores for the Gonghe Basin, Qinghai
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.01 | ||||||
C2 | 0 | 0 | 0.1 | 0.9 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.3 | 0.7 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 0 | 0 | 0 | 1 | 0 | ||||||||
C7 | 0 | 0 | 0.34 | 0.66 | 0 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.348 | 0.094 | 0.275 | 0.285 | 0.000 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 0.7 | 0.3 | 0 | 6.12 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0 | 0.571 | 0.429 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0.9 | 0.1 | 0 | ||||||||
C8 | 1 | 0 | 0 | 0 | 0 | ||||||||
E | 0.086 | 0.100 | 0.604 | 0.211 | 0.000 |
Table 10 Evaluation index membership degrees and comprehensive evaluation scores for the Leiqiong volcanic area, Hainan
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 0.7 | 0.3 | 0 | 6.12 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.5 | 0.5 | 0 | 0 | ||||||||
C5 | 0 | 0.571 | 0.429 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0.9 | 0.1 | 0 | ||||||||
C8 | 1 | 0 | 0 | 0 | 0 | ||||||||
E | 0.086 | 0.100 | 0.604 | 0.211 | 0.000 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 5.34 | ||||||
C2 | 0 | 0 | 0 | 0.8 | 0.2 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.7 | 0.3 | 0 | 0 | ||||||||
C5 | 0 | 0.286 | 0.714 | 0 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0.813 | 0.187 | ||||||||
C7 | 0 | 0 | 0 | 0.08 | 0.92 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.000 | 0.101 | 0.580 | 0.206 | 0.114 |
Table 11 Evaluation index membership degrees and comprehensive evaluation scores for the Songliao Basin
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 5.34 | ||||||
C2 | 0 | 0 | 0 | 0.8 | 0.2 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.7 | 0.3 | 0 | 0 | ||||||||
C5 | 0 | 0.286 | 0.714 | 0 | 0 | ||||||||
C6 | 0 | 0 | 0 | 0.813 | 0.187 | ||||||||
C7 | 0 | 0 | 0 | 0.08 | 0.92 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.000 | 0.101 | 0.580 | 0.206 | 0.114 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.53 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.7 | 0.3 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0 | 0.227 | 0.773 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.407 | 0.132 | 0.313 | 0.120 | 0.030 |
Table 12 Evaluation index membership degrees and comprehensive evaluation scores for the Tengcong volcanic area, Yunnan
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 1 | 0 | 0 | 0 | 0 | 7.53 | ||||||
C2 | 0 | 0 | 0.5 | 0.5 | 0 | ||||||||
C3 | 0 | 0 | 1 | 0 | 0 | ||||||||
C4 | 0 | 0.7 | 0.3 | 0 | 0 | ||||||||
C5 | 0.286 | 0.714 | 0 | 0 | 0 | ||||||||
C6 | 1 | 0 | 0 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0 | 0.227 | 0.773 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.407 | 0.132 | 0.313 | 0.120 | 0.030 |
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 5.89 | ||||||
C2 | 0 | 0 | 0 | 0.5 | 0.5 | ||||||||
C3 | 1 | 0 | 0 | 0 | 0 | ||||||||
C4 | 0 | 0.6 | 0.4 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.857 | 0.143 | 0 | ||||||||
C6 | 0 | 0 | 1 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0 | 0.433 | 0.567 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.147 | 0.056 | 0.524 | 0.141 | 0.133 |
Table 13 Evaluation index membership degrees and comprehensive evaluation scores for the central and eastern areas of North China
集合 | R1 | R2 | R3 | R4 | R5 | r | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | C1 | 0 | 0 | 1 | 0 | 0 | 5.89 | ||||||
C2 | 0 | 0 | 0 | 0.5 | 0.5 | ||||||||
C3 | 1 | 0 | 0 | 0 | 0 | ||||||||
C4 | 0 | 0.6 | 0.4 | 0 | 0 | ||||||||
C5 | 0 | 0 | 0.857 | 0.143 | 0 | ||||||||
C6 | 0 | 0 | 1 | 0 | 0 | ||||||||
C7 | 0 | 0 | 0 | 0.433 | 0.567 | ||||||||
C8 | 0 | 0 | 1 | 0 | 0 | ||||||||
E | 0.147 | 0.056 | 0.524 | 0.141 | 0.133 |
序号 | 评价区 | 综合评分 |
---|---|---|
1 | 西藏南北地堑系 | 7.66 |
2 | 滇西腾冲火山区 | 7.53 |
3 | 青海共和盆地 | 7.01 |
4 | 海南雷琼火山区 | 6.12 |
5 | 吉林长白山 | 5.94 |
6 | 华北中东部 | 5.89 |
7 | 广东阳江盆地 | 5.66 |
8 | 松辽盆地 | 5.34 |
9 | 汾渭地堑 | 4.90 |
Table 14 Results of comprehensive evaluation of geological conditions for deep geothermal energy exploitation in typical areas in China
序号 | 评价区 | 综合评分 |
---|---|---|
1 | 西藏南北地堑系 | 7.66 |
2 | 滇西腾冲火山区 | 7.53 |
3 | 青海共和盆地 | 7.01 |
4 | 海南雷琼火山区 | 6.12 |
5 | 吉林长白山 | 5.94 |
6 | 华北中东部 | 5.89 |
7 | 广东阳江盆地 | 5.66 |
8 | 松辽盆地 | 5.34 |
9 | 汾渭地堑 | 4.90 |
[1] | 国家能源局. 地热能术语: NB/T 10097—2018 [S]. 北京: 中国石化出版社, 2018: 1-24. |
[2] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[3] | 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015. |
[4] |
KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA[J]. Geothermics, 2016, 63:5-14.
DOI URL |
[5] | SONG Y, LEE T J, JEON J, et al. Background and progress of the Korean EGS pilot project [C]//Proceedings World Geothermal Congress 2015, International Geothermal Association, Melbourne, Australia, 19-25 April, 2015. |
[6] | DEZAYES C, CASTERA J, HEILBORNN G, et al. Regional geological 3D model of the Soultz-sous-Forêts Geothermal Field (Rhine Graben, France)[J]. Geothermal Resources Council Transactions, 2009, 33:175-180. |
[7] |
GÉRARD A, GENTER A, KOHL T, et al. The Deep EGS (Enhanced Geothermal System) Project at Soultz-sous-Forêts (Alsace, France)[J]. Geothermics, 2006, 35(5/6):473-483.
DOI URL |
[8] | SIMMONS S F, MOORE J, ALLIS R, et al. A revised geoscientific model for FORGE Utah EGS Laboratory [C]//Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering. Palo Alto: Stanford University, 2018. |
[9] | SIMMONS S, KIRBY S, JONES C, et al. The geology, geochemistry, and hydrology of the EGS FORGE Site, Milford Utah [C]//Proceedings of the 41st Workshop on Geothermal Reservior Engineering. Palo Alto: Stanford University, 2016: 1181-1190. |
[10] | JIANG G, HU S, SHI Y, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753:36-48. |
[11] | WALKER J D, SABIN A, UNRUH J, et al. Development of genetic occurrence models for geothermal prospecting [C]//Proceedings of AGU Fall Meeting Abstracts, American Geophysical Union, 2007. |
[12] | SABIN A E, WALKER J D, UNRUH J, et al. Toward the development of occurrence models for geothermal resources in the western United States[J]. Geothermal Resources Council Transactions, 2004, 28:41-46. |
[13] |
LAUGHLIN A W, EDDY A C, LANEY R, et al. Geology of the Fenton Hill, New Mexico, Hot Dry Rock Site[J]. Journal of Volcanology and Geothermal Research, 1983, 15(1/2/3):21-41.
DOI URL |
[14] | LEE T J, SONG Y, PARK D W, et al. Three dimensional geological model of Pohang EGS pilot site, Korea [C]//Proceedings of the World Geothermal Congress 2015, International Geothermal Association, Melbourne, Australia. 2015: 119-123. |
[15] | HOLL H, BARTON C. Habanero field: Structure and state of stress [C]//Proceedings World Geothermal Congress 2015, International Geothermal Association, Melbourne, Australia, 19-25 April, 2015. |
[16] | CHEN D, WYBORN D. Habanero field tests in the Cooper Basin, Australia: a proof-of-concept for EGS[J]. Geothermal Resources Council Transactions, 2009, 33(1):140-145. |
[17] | BARIA R, BAUMGARTNER J, GERARD A, et al. The European HDR programme: main targets and results of the deepening of the well GPK2 to 5000 m [C]//Proceedings of the World Geothermal Congress 2000, International Geothermal Association, Japan. 2000: 3643-3652. |
[18] | ALLIS R, MOORE J, DAVATZES N, et al. EGS concept testing and development at the Milford, Utah FORGE site [C]//Proceedings of the 41st Workshop on Geothermal Reservior Engineering. Palo Alto: Stanford University, 2016. |
[19] | SHYIMIN L. A global review of enhanced geothermal system (EGS)[J]. Renewable & Sustainable Energy Reviews, 2018, 81:2902-2921. DOI: 10.1016/j.rser.2017.06.097. |
[20] |
AYLING B, MOORE J. Fluid Geochemistry at the Raft River Geothermal Field, Idaho, USA: new data and hydrogeological implications[J]. Geothermics, 2013, 47:116-126.
DOI URL |
[21] |
BREEDE K, DZEBISASHVILI K, LIU X L, et al. A systematic review of Enhanced (or Engineered) Geothermal Systems: past, present and future[J]. Geothermal Energy, 2013, 1(1):1-27.
DOI URL |
[22] | LEE T J, SONG Y, YOON W S, et al. The first enhanced geothermal system project in Korea [C]//Proceedings of the 9th Asian Geothermal Symposium, Qingdao, China. 2011, 7:9-11. |
[23] | POTTER R, ROBINSON E, Method of extracting heat from dry geothermal reservoirs: U.S. Patent 3,786,858[P]. 1974-01-22. |
[24] | WINCHESTER W. Hot dry rock energy progress report fiscal year 1992 [R]. Los Alamos National Laboratory Report LA-UR-93-1678, New Mexico, USA, Appendix, 1993. |
[25] |
PAUWELS H. Geochemical Results of a Single-well hydraulic injection test in an experimental hot dry rock geothermal reservoir, Soultz-sous-Forêts, Alsace, France[J]. Applied Geochemistry, 1997, 12(5):661-673.
DOI URL |
[26] | HORNE RN. What does the future hold for geothermal energy?[C]. New Zealand Geothermal Workshop, University of Auckland, Auckland, New Zealand, 2011. |
[27] |
GARCIA J, HARTLINE C, WALTERS M, et al. The Northwest Geysers EGS Demonstration Project, California. Part 1: characterization and Reservoir Response to Injection[J]. Geothermics, 2016, 63:97-119.
DOI URL |
[28] | NGOTHAI Y, PRING A, BRUGGER J, et al. A review of current experiment fluid-rock interaction in EGS reservoirs[C]. New Zealand Geothermal Workshop, University of Auckland, Auckland, New Zealand, 2011. |
[29] | ROSE P E. Creation of an enhanced geothermal system through hydraulic and thermal stimulation [R]. Utah, USA: Office of Scientific and Technical Information (OSTI), 2004:22-28. |
[30] |
PANG J M, PANG Z H, LV M, et al. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences, 2018, 77(1):12.
DOI URL |
[31] | 庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11):1224-1230. |
[32] |
GOLDSCHEIDER N, MÁDL-SZÖNYI J, ERÖSS A, et al. Review: thermal water resources in carbonate rock aquifers[J]. Hydrogeology Journal, 2010, 18(6):1303-1318.
DOI URL |
[33] | 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32):18-24. |
[34] | 熊盛青, 杨海, 丁燕云, 等. 中国陆域居里等温面深度特征[J]. 地球物理学报, 2016, 59(10):3604-3617. |
[35] | MARK-MOSER M K, CAMERON E, ROSE K, et al. Constraining subsurface model resolution at newberry volcano using a weighted spatial analysis[J]. Geothermal Resources Council Transactions, 2016, 40:567-572. |
[36] | MACLEOD N S, SHERROD D R. Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B9):10067-10079. |
[37] | 陈棋福, 艾印双, 陈赟. 长白山火山区深部结构探测的研究进展与展望[J]. 中国科学:地球科学, 2019, 49(5):778-795. |
[38] |
ZHANG M L, GUO Z F, LIU J Q, et al. The intraplate Changbaishan volcanic field (China/North Korea): a review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards[J]. Earth-Science Reviews, 2018, 187:19-52.
DOI URL |
[39] | 崔天日, 钱程, 江斌, 等. 长白山天池火山CZK07钻所揭示的火山地层层序和火山作用特征[J]. 地质学报, 2017, 91(11):2409-2422. |
[40] | 潘佳铁, 吴庆举, 李永华, 等. 中国东北地区噪声层析成像[J]. 地球物理学报, 2014, 57(3):812-821. |
[41] | 明跃红, 苏伟, 房立华. 长白山天池火山地震类型及火山活动性的初步研究[J]. 中国地震, 2006, 22(1):56-63. |
[42] | 汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地质科学, 1988, 23(2):196-204. |
[43] | 闫佰忠, 肖长来, 梁秀娟, 等. 长白山玄武岩区盆地型地热水特征及成因模式[J]. 地质论评, 2018, 64(5):1201-1216. |
[44] | 闫佰忠, 邱淑伟, 肖长来, 等. 长白山玄武岩区主要断裂与地热水异常关系[J]. 水文地质工程地质, 2017, 44(4):34-40. |
[45] | 陈鹏, 单玄龙, 郝国丽, 等. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4):1236-1246. |
[46] | 仇根根, 裴发根, 方慧, 等. 长白山天池火山岩浆系统分析[J]. 地球物理学报, 2014, 57(10):3466-3477. |
[47] | 张先康, 张成科, 赵金仁, 等. 长白山天池火山区岩浆系统深部结构的深地震测深研究[J]. 地震学报, 2002, 24(2):135-143, 223. |
[48] | 汤吉, 邓前辉, 赵国泽, 等. 长白山天池火山区电性结构和岩浆系统[J]. 地震地质, 2001, 23(2):191-200. |
[49] | 葛荣峰, 张庆龙, 王良书, 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 2010, 56(2):180-195. |
[50] | 胡望水, 吕炳全, 张文军, 等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学, 2005, 40(1):16-31. |
[51] | 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学版), 2002, 38(4):525-531. |
[52] | 张广成, 吴庆举, 潘佳铁, 等. 利用H-K叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报, 2013, 56(12):4084-4094. |
[53] | 韩江涛, 郭振宇, 刘文玉, 等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报, 2018, 61(6):2265-2279. |
[54] | 楼章华, 程军蕊, 金爱民. 沉积盆地地下水动力场特征研究: 以松辽盆地为例[J]. 沉积学报, 2006, 24(2):193-201. |
[55] | 楼章华, 金爱民, 朱蓉, 等. 论松辽盆地地下水动力场的形成与演化[J]. 地质学报, 2001, 75(1):111-120. |
[56] | 彭建兵. 渭河断裂带的构造演化与地震活动[J]. 地震地质, 1992, 14(2):113-120. |
[57] | 冯希杰, 李晓妮, 任隽, 等. 渭河断裂深、中、浅和近地表显示[J]. 地震地质, 2008, 30(1):264-272. |
[58] | 韩恒悦, 张逸, 袁志祥. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 2002, 25(4):362-368. |
[59] | 饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6):2176-2190. |
[60] | 王谦身, 滕吉文, 张永谦, 等. 鄂尔多斯—中秦岭—四川东部的重力异常场与深部地壳结构[J]. 地球物理学报, 2015, 58(2):532-541. |
[61] | 胡国泽, 滕吉文, 阮小敏, 等. 秦岭造山带和邻域磁异常特征及结晶基底变异分析[J]. 地球物理学报, 2014, 57(2):556-571. |
[62] | 任隽, 彭建兵, 王夫运, 等. 渭河盆地及邻区地壳深部结构特征研究[J]. 地球物理学报, 2012, 55(9):2939-2947. |
[63] | 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学(武汉), 2018: 1-152. |
[64] | 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉: 中国地质大学(武汉), 2013: 1-140. |
[65] | 周佐民. 华南晚中生代多旋回构造-岩浆演化及地热成因机制[D]. 武汉: 中国地质大学(武汉), 2015: 1-134. |
[66] | 周毅, 刘金辉, 孙占学, 等. 阳江新洲地热田花岗岩基底放射性生热率特征[J]. 现代矿业, 2016, 32(8):157-158, 161. |
[67] | 蔺文静, 甘浩男, 王贵玲, 等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报, 2016, 90(8):2043-2058. |
[68] | 鲁连仲. 西藏地热活动的地质背景分析[J]. 地球科学, 1989, 14(增刊):53-59. |
[69] | 佟伟, 张知非, 廖志杰, 等. 西藏高原的水热活动和上地壳热状态初探[J]. 地球物理学报, 1982, 25(1):34-40. |
[70] | 杨文采, 江金生, 瞿辰, 等. 西藏新生代裂谷系成因的探讨[J]. 地质论评, 2019, 65(2):267-279. |
[71] | 张朝锋, 史强林, 张玲娟. 青藏高原新生代岩浆活动与地热关系探讨[J]. 中国地质调查, 2018, 5(2):18-24. |
[72] | 康文华, 李德禄, 白嘉启. 西藏羊八井热田地热地质[J]. 中国地质科学院地质力学研究所所刊, 1985(6):17-79. |
[73] | 多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1):42-47 |
[74] | 刘昭, 蔺文静, 张萌, 等. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘, 2014, 21(6):356-371. |
[75] | 沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报, 1990, 11(2):203-214. |
[76] | 魏文博, 金胜, 叶高峰, 等. 藏南岩石圈导电性结构与流变性: 超宽频带大地电磁测深研究结果[J]. 中国科学: D辑, 2009, 39(11):1591-1606. |
[77] | 李振清, 侯增谦, 聂凤军, 等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报, 2005, 79(1):68-77. |
[78] | 张中杰, 滕吉文, 杨立强, 等. 藏南地壳速度结构与地壳物质东西向“逃逸”: 以佩枯错—普莫雍错宽角反射剖面为例[J]. 中国科学: D辑, 2002, 32(10):793-798. |
[79] | 魏斯禹, 腾吉文, 杨秉平, 等. 西藏高原地热活动、温泉分布与地球物理场特征[J]. 西北地震学报, 1981, 3(4):17-25. |
[80] | 侯增谦, 李振清. 印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报, 2004, 78(4):482-493. |
[81] | 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(3):23-32. |
[82] | 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰深层地热能体地热地质特征[J]. 中国地质, 2018, 45(6):1087-1102. |
[83] | 严维德, 王焰新, 高学忠, 等. 共和盆地地热能分布特征与聚集机制分析[J]. 西北地质, 2013, 46(4):223-230. |
[84] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统:国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9):1936-1947. |
[85] | 严维德. 共和盆地干热岩特征及利用前景[J]. 科技导报, 2015, 33(19):54-57. |
[86] | 张超, 张盛生, 李胜涛, 等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 2018, 61(11):4545-4557. |
[87] | 郭文斌, 嘉世旭, 段永红, 等. 青藏高原东北缘基底结构研究: 玛多—共和—雅布赖剖面上地壳地震折射探测[J]. 地球物理学报, 2016, 59(10):3627-3636. |
[88] | 汤吉, 詹艳, 赵国泽, 等. 青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究[J]. 地球物理学报, 2005, 48(5):1205-1216. |
[89] | 李松林, 张先康, 张成科, 等. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J]. 地球物理学报, 2002, 45(2):210-217. |
[90] |
GAO J, ZHANG H J, ZHANG S Q, et al. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau[J]. Geothermics, 2018, 76:15-25.
DOI URL |
[91] |
ZHANG C, JIANG G Z, SHI Y, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72:182-192.
DOI URL |
[92] |
HARRISON T M, MORGAN P, BLACKWELL D D. Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera, New Mexico[J]. Journal of Geophysical Research Atmospheres, 1986, 91(B2):1899.
DOI URL |
[93] | 樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544. |
[94] | 高维, 舒晴, 谢顺盛, 等. 琼北新生代火山构造的航磁异常特征及其地质意义[J]. 地质论评, 2016, 62(1):235-247. |
[95] | 李蔚然, 季建清, 桑海清, 等. 雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究[J]. 岩石学报, 2013, 29(8):2775-2788. |
[96] | 赵平, 汪集, 汪缉安, 等. 中国东南地区岩石生热率分布特征[J]. 岩石学报, 1995, 11(3):292-305. |
[97] | 赵迎冬, 甘华军, 时阳, 等. 北部湾盆地福山凹陷异常地温特征及其对油气藏的影响[J]. 油气地质与采收率, 2016, 23(3):40-46. |
[98] | 胡久常, 白登海, 王薇华, 等. 雷琼火山区地下深部大地电磁探测与电性结构分析[J]. 华南地震, 2007, 27(1):1-7. |
[99] | 嘉世旭, 李志雄, 徐朝繁, 等. 雷琼拗陷地壳结构特征[J]. 地球物理学报, 2006, 49(5):1385-1394. |
[100] | 佟伟, 章铭陶. 腾冲地热[M]. 北京: 科学出版社, 1989: 1-262. |
[101] | 佟伟, 穆治国, 刘时彬. 中国晚新生代火山和现代高温水热系统[J]. 地球物理学报, 1990, 33(3):329-335. |
[102] | 姜朝松, 周瑞琦, 姚孝执. 腾冲火山断裂构造[J]. 地震研究, 1998, 21(4):330-336. |
[103] | 罗照华, 刘嘉麒, 赵慈平, 等. 深部流体与岩浆活动:兼论腾冲火山群的深部过程[J]. 岩石学报, 2011, 27(10):2855-2862. |
[104] | 赵勇伟, 樊祺诚. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化[J]. 岩石学报, 2010, 26(4):1133-1140. |
[105] | 樊祺诚, 刘若新, 魏海泉, 等. 腾冲活火山的岩浆演化[J]. 地质论评, 1999, 45(增刊):895-904. |
[106] | 叶涛. 云南盈江—龙陵地区的深部电性结构及其动力学意义研究[D]. 北京: 中国地震局地质研究所, 2013: 1-82. |
[107] | 姜枚, 谭捍东, 张聿文, 等. 云南腾冲火山构造区马站—固东岩浆囊的地球物理模式[J]. 地球学报, 2012, 33(5):731-739. |
[108] | 杨晓涛, 胥颐, 刘建华, 等. 腾冲火山区的地震层析成像及其构造意义[J]. 地球物理学报, 2011, 54(8):2050-2059. |
[109] | 王椿镛, 楼海, 吴建平, 等. 腾冲火山地热区地壳结构的地震学研究[J]. 地震学报, 2002, 24(3):231-242. |
[110] | 白登海, 廖志杰, 赵国泽, 等. 从MT探测结果推论腾冲热海热田的岩浆热源[J]. 科学通报, 1994, 39(4):344-347. |
[111] | 余明, 汤庆艳, 张铭杰, 等. 腾冲新生代火山作用流体组成及其来源: 火山岩流体化学组成和碳同位素制约[J]. 岩石学报, 2014, 30(12):3635-3644. |
[112] | 赵慈平, 冉华, 陈坤华. 腾冲火山区壳内岩浆囊现今温度:来自温泉逸出气体CO2、CH4间碳同位素分馏的估计[J]. 岩石学报, 2011, 27(10):2883-2897. |
[113] | 周真恒, 向才英, 赵晋明. 滇西地热场特征[J]. 地震研究, 1995, 18(1):41-48. |
[114] | 吴智平, 侯旭波, 李伟. 华北东部地区中生代盆地格局及演化过程探讨[J]. 大地构造与成矿学, 2007, 31(4):385-399. |
[115] | 侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版), 2001, 37(6):845-851. |
[116] | 金春爽, 乔德武, 淡伟宁. 渤海湾盆地中、新生代火山岩分布及油气藏特征[J]. 石油与天然气地质, 2012, 33(1):19-29, 36. |
[117] | 姜在兴, 肖尚斌. 渤海湾盆地第三系火成岩的分布规律[J]. 地质论评, 1999, 45(增刊):618-626. |
[118] | 彭宁, 崔秀梅, 崔周旗, 等. 冀中坳陷古近系—新近系火成岩岩相特征与油气成藏模式[J]. 油气地质与采收率, 2010, 17(2):17-20, 112. |
[119] | 王盘喜, 杨霄, 卞孝东. 冀中坳陷火成岩岩石学及地球化学特征[J]. 地质科技情报, 2012, 31(4):1-10. |
[120] | 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3):1003-1016. |
[121] | 陈墨香, 黄歌山, 汪缉安, 等. 渤海地温场特点的初步研究[J]. 地质科学, 1984, 19(4):392-401. |
[122] | 林世辉, 龚育龄. 冀中坳陷现今地温场分布特征[J]. 东华理工学院学报, 2005, 28(4):359-364. |
[123] | 周瑞良, 刘琦胜, 张晶, 等. 华北断陷盆地牛驼镇基岩高凸起型热田地质特征及其开发前景[J]. 中国地质科学院562综合大队集刊, 1989(7/8):21-36. |
[124] | 陈墨香, 黄歌山, 张文仁, 等. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, 1982, 17(3):239-252. |
[125] | 孙文亮. 冀中拗陷火成岩成藏条件研究[D]. 北京:中国地质大学(北京), 2010: 1-63. |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[3] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[4] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[5] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[6] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[7] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[8] | JIA Han, LIU Junxing, YIN Xianyang, WANG Chunguang, GENG Hao, CHI Haoxuan, TANG Shijie. Ecological evaluation of the Tongling pyrite mining district in Anhui Province [J]. Earth Science Frontiers, 2021, 28(4): 131-141. |
[9] | ZHANG Xiaowen, HE Jiangtao, HUANG Guanxing. Iron and manganese in shallow groundwater in Shijiazhuang: Distribution characteristics and a cause analysis [J]. Earth Science Frontiers, 2021, 28(4): 206-218. |
[10] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
[11] | GUO Qinghai, HE Tong, ZHUANG Yaqin, LUO Jin, ZHANG Canhai. Expansion of fracture network in granites via chemical stimulation: a laboratory study [J]. Earth Science Frontiers, 2020, 27(1): 159-169. |
[12] | TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS) [J]. Earth Science Frontiers, 2020, 27(1): 112-122. |
[13] | QI Xiaofei, SHANGGUAN Shuantong, ZHANG Guobin, PAN Miaomiao, SU Ye, TIAN Lanlan, LI Xiang, QIAO Yongchao, ZHANG Jianyong. Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province [J]. Earth Science Frontiers, 2020, 27(1): 94-102. |
[14] | HE Zhiliang, ZHANG Ying, FENG Jianyun, LUO Jun, LI Pengwei. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China [J]. Earth Science Frontiers, 2020, 27(1): 81-93. |
[15] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||