[1] |
李亚松, 张兆吉, 费宇红, 等. 河北省滹沱河冲积平原地下水质量及污染特征研究[J]. 地球学报, 2014, 35(2):169-176.
|
[2] |
张小文, 何江涛, 刘丹丹, 等. 滹沱河冲洪积扇浅层地下水水质外界胁迫作用分析[J]. 水文地质工程地质, 2018, 45(5):48-56.
|
[3] |
ZHANG Q Q, WANG H W, WANG Y C, et al. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of Northern China[J]. Environmental Science and Pollution Research, 2017, 24(20):16639-16650.
DOI
URL
|
[4] |
LI Y S, ZHANG Z J, FEI Y H, et al. Investigation of quality and pollution characteristics of groundwater in the Hutuo River Alluvial Plain, North China Plain[J]. Environmental Earth Sciences, 2016, 75(7):1-10.
DOI
URL
|
[5] |
ZHANG X W, HE J T, HE B N, et al. Assessment, formation mechanism, and different source contributions of dissolved salt pollution in the shallow groundwater of Hutuo River alluvial-pluvial fan in the North China Plain[J]. Environmental Science and Pollution Research, 2019, 26(35):35742-35756.
DOI
URL
|
[6] |
刘琰, 乔肖翠, 江秋枫, 等. 滹沱河冲洪积扇地下水硝酸盐含量的空间分布特征及影响因素[J]. 农业环境科学学报, 2016, 35(5):947-954.
|
[7] |
United States Environmental Protection Agency. Secondary drinking water standards: guidance for nuisance chemicals[EB/OL].[2019-01-15]. https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals .
|
[8] |
SPANGLER A H, SPANGLER J G. Groundwater manganese and infant mortality rate by county in north Carolina: an ecological analysis[J]. EcoHealth, 2009, 6(4):596-600.
DOI
URL
|
[9] |
SPANGLER J G, REID J C. Environmental manganese and cancer mortality rates by county in north Carolina: an ecological study[J]. Biological Trace Element Research, 2010, 133(2):128-135.
|
[10] |
邹晓锦, 仇荣亮, 周小勇, 等. 大宝山矿区重金属污染对人体健康风险的研究[J]. 环境科学学报, 2008, 28(7):1406-1412.
|
[11] |
CARRETERO S, KRUSE E. Iron and manganese content in groundwater on the northeastern Coast of the Buenos Aires Province, Argentina[J]. Environmental Earth Sciences, 2015, 73(5):1983-1995.
DOI
URL
|
[12] |
SINGH A, SHARMA R K, AGRAWAL M, et al. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India[J]. Food and Chemical Toxicology, 2010, 48(2):611-619.
DOI
URL
|
[13] |
FARINA M, AVILA D S, DA ROCHA J B T, et al. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury[J]. Neurochemistry International, 2013, 62(5):575-594.
DOI
URL
|
[14] |
孙晓林. 滹沱河冲洪积扇地下水数值模拟及其适宜水位控制研究[D]. 北京: 中国地质大学(北京), 2012.
|
[15] |
HELSEL D R. Less than obvious: statistical treatment of data below the detection limit[J]. Environmental Science & Technology, 1990, 24(12):1766-1774.
DOI
URL
|
[16] |
张英, 孙继朝, 黄冠星, 等. 珠江三角洲地区地下水环境背景值初步研究[J]. 中国地质, 2011, 38(1):190-196.
|
[17] |
HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of the Total Environment, 2013, 463/464:209-221.
DOI
URL
|
[18] |
侯春堂, 刘晓端. 华北平原水土地质环境图集[CM]. 北京: 地质出版社, 2010.
|
[19] |
赵红梅, 赵华, 毛洪亮, 等. 华北平原滹沱河冲洪积扇第四纪地层划分[J]. 地层学杂志, 2014, 38(2):137-146.
|
[20] |
张小文, 何江涛, 彭聪, 等. 地下水主要组分水化学异常识别方法对比: 以柳江盆地为例[J]. 环境科学, 2017, 38(8):3225-3234.
|
[21] |
PENG C, HE J T, WANG M L, et al. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO 3 -, NH 4 +, and COD contamination: a case study of the Liujiang River Basin, Hebei Province, P R China[J]. Environmental Science and Pollution Research, 2018, 25(4):3539-3556.
|
[22] |
廖磊, 何江涛, 彭聪, 等. 地下水次要组分视背景值研究: 以柳江盆地为例[J]. 地学前缘, 2018, 25(1):267-275.
|
[23] |
彭聪, 何江涛, 廖磊, 等. 应用水化学方法识别人类活动对地下水水质影响程度: 以柳江盆地为例[J]. 地学前缘, 2017, 24(1):321-331.
|
[24] |
廖磊. 柳江盆地浅层地下水次要组分和微量组分视背景值研究[D]. 北京: 中国地质大学(北京), 2016.
|
[25] |
张兆吉, 费宇红. 华北平原地下水可持续利用图集[CM]. 北京: 中国地图出版社, 2009.
|
[26] |
李广贺, 赵勇胜, 何江涛, 等. 地下水污染风险源识别与防控区划技术[M]. 北京: 中国环境科学出版社, 2015.
|
[27] |
王曼丽, 何江涛, 崔亚丰, 等. 基于折减系数的地下水污染风险评价方法探究[J]. 环境科学学报, 2016, 36(12):4510-4519.
|