[1] |
杨勤学, 赵冰清, 郭东罡. 中国北方露天煤矿区植被恢复研究进展[J]. 生态学杂志, 2015, 34(4):1152-1157.
|
[2] |
张泽民, 吕昌河, 谢苗苗, 等. 基于WorldView 2影像的矿区植被重建效果评估[J]. 生态学报, 2018, 38(4):1301-1310.
|
[3] |
张兆彤, 王金满, 张佳瑞. 矿区复垦土壤与植被交互影响的研究进展[J]. 土壤, 2018, 50(2):239-247.
|
[4] |
PETROPOULOS G P, PARTSINEVELOS P, MITRAKA Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery[J]. Geocarto International, 2013, 28(4):323-342.
|
[5] |
张耀, 周伟. 安太堡露天矿区复垦地植被覆盖度反演估算研究[J]. 中南林业科技大学学报, 2016, 36(11):113-119.
|
[6] |
曾纳, 任小丽, 何洪林, 等. 基于神经网络的三江源区草地地上生物量估算[J]. 环境科学研究, 2017, 30(1):59-66.
|
[7] |
安海波, 李斐, 赵萌莉, 等. 基于优化光谱指数的牧草生物量估算[J]. 光谱学与光谱分析, 2015, 35(11):3155.
|
[8] |
赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算[J]. 中国沙漠, 2019, 39(5):127-134.
|
[9] |
阮兰君, 杨燕琼. 东莞市针叶类森林生物量遥感模型研究[J]. 林业与环境科学, 2018, 34(1):32-36.
|
[10] |
WANG G Q, LIU S M, LIU T X, et al. Modelling above-ground biomass based on vegetation indexes: a modified approach for biomass estimation in semi-arid grasslands[J]. International Journal of Remote Sensing, 2019, 40(10):3835-3854.
|
[11] |
乔正年, 耿庆宏, 徐雁南. 运用卫星遥感数据对杨树人工林生物量的估算[J]. 东北林业大学学报, 2019, 47(5):66-71.
|
[12] |
CHANG J G, SHOSHANY M, OH Y. Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):7102-7108.
DOI
URL
|
[13] |
潘磊, 孙玉军. 应用Sentinel-1影像纹理信息模型估测杉木林生物量[J]. 东北林业大学学报, 2018, 46(1):58-62.
|
[14] |
HUANG C D, YE X Y, DENG C B, et al. Mapping above-ground biomass by integrating optical and SAR imagery: a case study of Xixi national wetland park, China[J]. Remote Sensing, 2016, 8(8):647.
DOI
URL
|
[15] |
SHAO Z F, ZHANG L J, WANG L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5569-5582.
DOI
URL
|
[16] |
行敏锋, 何彬彬. 主被动遥感数据协同估算干旱区草原植被生物量[J]. 遥感技术与应用, 2015, 30(6):1122-1128.
|
[17] |
秦立厚, 张茂震, 钟世红, 等. 森林生物量估算中模型不确定性分析[J]. 生态学报, 2017, 37(23):7912-7919.
|
[18] |
郭山川, 汤傲, 李效顺, 等. 融合主被动遥感的乌海矿区土地损伤测度[J]. 生态与农村环境学报, 2018, 34(8):678-685.
|
[19] |
申艳琴. 半干旱区煤炭开采对植被扰动规律的研究: 以神东矿区为例[D]. 徐州: 中国矿业大学, 2014.
|
[20] |
李小静. 彬长煤矿地表沉陷区植被变化遥感监测研究[D]. 西安: 西安科技大学, 2013.
|
[21] |
LIU L Y, WANG J H, HUANG W J, et al. Estimating winter wheat plant water content using red edge parameters[J]. International Journal of Remote Sensing, 2004, 25(17):3331-3342.
DOI
URL
|
[22] |
DONG T F, LIU J G, SHANG J L, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation[J]. Remote Sensing of Environment, 2019, 222:133-143.
DOI
URL
|
[23] |
MAIMAITIJIANG M, GHULAM A, SIDIKE P, et al. Unmanned Aerial System (UAS): based phenotyping of soybean using multi-sensor data fusion and extreme learning machine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134:43-58.
|
[24] |
BARATI S, RAYEGANI B, SAATI M, et al. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas[J]. The Egyptian Journal of Remote Sensing and Space Science, 2011, 14(1):49-56.
DOI
URL
|
[25] |
ELMORE A J, MUSTARD J F, MANNING S J, et al. Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index[J]. Remote Sensing of Environment, 2000, 73(1):87-102.
DOI
URL
|
[26] |
LIU Y N, GONG W S, XING Y Q, et al. Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151:277-289.
|