Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 525-538.DOI: 10.13745/j.esf.sf.2022.9.11
WANG Ying1,2(), DING Xiaozhong1,2,*(
), HAN Kunying1,2, CHEN Jian3, LIU Jingwen4, LU Tianqi5, WANG Juntao4, SHI Chenglong1,2, JIN Ming1,2, PANG Jianfeng1,2
Received:
2022-06-10
Revised:
2022-09-08
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
WANG Ying, DING Xiaozhong, HAN Kunying, CHEN Jian, LIU Jingwen, LU Tianqi, WANG Juntao, SHI Chenglong, JIN Ming, PANG Jianfeng. Geological characteristics and evolution of the Schrödinger basin and adjacent areas: Insights from multi-source remote sensing data[J]. Earth Science Frontiers, 2023, 30(4): 525-538.
[1] | 刘敬稳, 刘建忠, 郭弟均, 等. 月球东海盆地综合解析与撞击初始条件的研究[J]. 岩石学报, 2016, 32(1): 135-143. |
[2] | 刘敬稳. 全月盆地地质解译与时空演化研究[D]. 贵阳: 中国科学院地球化学研究所, 2022:19-25. |
[3] | 郭弟均, 刘建忠, 籍进柱, 等. 月球的全球构造格架初探[J]. 地球物理学报, 2016, 59(10): 3543-3554. |
[4] | WILHELMS D E, HOWARD K A, WILSHIRE H G. Geologic map of the south side of the Moon[M]. Reston, Va.: The Survey, 1979 |
[5] |
SHOEMAKER E M, ROBINSON M S, ELIASON E M. The south pole region of the moon as seen by clementine[J]. Science, 1994, 266(5192): 1851-1854.
PMID |
[6] | AMBROSE W A, WILLIAMS D A. Recent advances and current research issues in lunar stratigraphy[M]. Boulder, Colo.: Geological Society of America, 2011. |
[7] |
KRAMER G Y, KRING D A, NAHM A L, et al. Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy[J]. Icarus, 2013, 223(1): 131-148.
DOI URL |
[8] |
YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE[J]. Nature Geoscience, 2010, 3(8): 533-536.
DOI |
[9] | YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al. Massive layer of pure anorthosite on the Moon[J]. Geophysical Research Letters, 2012, 39(13): 34-47. |
[10] |
SMITH D E, ZUBER M T, JACKSON G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1/2/3/4): 209-241.
DOI URL |
[11] |
ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews, 2010, 150(1/2/3/4): 81-124.
DOI URL |
[12] |
KONOPLIV A S, PARK R S, YUAN D N, et al. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission[J]. Journal of Geophysical Research: Planets, 2013, 118(7): 1415-1434.
DOI URL |
[13] | SMITH D E, ZUBER M T, NEUMANN G A, et al. Initial observations from the lunar orbiter laser altimeter (LOLA)[J]. Geophysical Research Letters, 2010, 37(18): 1-6. |
[14] |
CHEN J, LING Z C, LIU J Z, et al. Digital and global lithologic mapping of the Moon at a 1∶2,500,000 scale[J]. Science Bulletin, 2022, 67(20): 2050-2054.
DOI URL |
[15] | LAWRENCE D J, FELDMAN W C, ELPHIC R C, et al. Iron abundances on the lunar surface as measured by the Lunar Prospector gammer-ray and neutron spectrometers[J]. Journal of Geophysical Research, 2002, 107(E12): 1-26. |
[16] |
MYRIAM L, LUCEY PAUL G, ALEX C. Compositional maps of the lunar polar regions derived from the kaguya spectral profiler and the lunar orbiter laser altimeter data[J]. The Planetary Science Journal, 2022, 3(3):1-14.
DOI |
[17] | BOARDMAN J W, PIETERS C M, GREEN R O, et al. Measuring moonlight: an overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper[J]. Journal of Geophysical Research, 2011, 116: E00G14. |
[18] |
NOZETTE S, RUSTAN P, PLEASANCE L P, et al. The clementine mission to the moon: scientific overview[J]. Science, 1994, 266(5192): 1835-1839.
PMID |
[19] |
DONALDSON H K L, CHEEK L C, PIETERS C M, et al. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust[J]. Journal of Geophysical Research: Planets, 2014, 119(7): 1516-1545.
DOI URL |
[20] |
OHTAKE M, MATSUNAGA T, HARUYAMA J, et al. The global distribution of pure anorthosite on the Moon[J]. Nature, 2009, 461(7261): 236-240.
DOI |
[21] |
ARNOLD J A, GLOTCH T D, LUCEY P G, et al. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: implications for the formation of the lunar crust[J]. Journal of Geophysical Research: Planets, 2016, 121(7): 1342-1361.
DOI URL |
[22] |
HARUYAMA J, OHTAKE M, MATSUNAGA T, et al. Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE[J]. Advances in Space Research, 2007, 42(2): 310-316.
DOI URL |
[23] |
YUE Z Y, DI K C, WAN W H, et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples[J]. Nature Astronomy, 2022, 6(5): 541-545.
DOI |
[24] |
HARTMANN W K. Does crater “saturation equilibrium” occur in the solar system?[J]. Icarus, 1984, 60(1): 56-74.
DOI URL |
[25] | NEUKUM G, IVANOV B A, HARTMANN W K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System[C]// KALLENBACH R, GEISS J, HARTMANN W K. Chronology and Evolution of Mars. Dordrecht: Springer, 2001: 55-86. |
[26] |
LU T Q, ZHU K, CHEN S B, et al. The 1∶2,500,000-scale global tectonic map of the Moon[J]. Science Bulletin, 2022, 67(19): 1962-1966.
DOI URL |
[27] |
WIECZOREK M A, NEUMANN G A, NIMMO F, et al. The crust of the moon as seen by GRAIL[J]. Science, 2013, 339(6120): 671-675.
DOI PMID |
[28] | 陆天启. 月球构造遥感识别及其演化研究[D]. 长春: 吉林大学, 2020: 28-51. |
[29] | 陆天启, 陈圣波, 朱凯. 基于GRAIL重力数据的月球深部断裂识别和空间分布研究[J]. 地球物理学报, 2019, 62(8): 2835-2844. |
[30] |
ANDREWS-HANNA J C, ASMAR S W, HEAD J W, et al. Ancient igneous intrusions and early expansion of the moon revealed by GRAIL gravity gradiometry[J]. Science, 2013, 339(6120): 675-678.
DOI URL |
[31] |
WOOD J A, DICKEY J S J, MARVIN U B, et al. Lunar anorthosites[J]. Science, 1970, 167(3918): 602-604.
PMID |
[32] |
WARREN P H. The magma ocean concept and lunar evolution[J]. Annual Review of Earth and Planetary Sciences, 1985, 13: 201-240.
DOI URL |
[33] |
SHEARER C K. Thermal and magmatic evolution of the moon[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 365-518.
DOI URL |
[34] |
DOWTY E, PRINZ M, KEIL K. Ferroan anorthosite: a widespread and distinctive lunar rock type[J]. Earth and Planetary Science Letters, 1974, 24(1): 15-25.
DOI URL |
[35] | CINTALA M J, GRIEVE R A F. The effects of differential scaling of impact melt and crater dimensions on lunar and terrestrial craters: some brief examples[M]// Geological Society of America Special Papers. Boulder: Geological Society of America, 1992: 51-60. |
[36] |
PIETERS C M, TOMPKINS S, HEAD J W, et al. Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: implications for excavation of the lunar mantle[J]. Geophysical Research Letters, 1997, 24(15): 1903-1906.
DOI URL |
[37] |
NAKAMURA R, MATSUNAGA T, OGAWA Y, et al. Ultramafic impact melt sheet beneath the South Pole-Aitken Basin on the Moon[J]. Geophysical Research Letters, 2009, 36(22): L22202.
DOI URL |
[38] |
POTTER R W K, COLLINS G S, KIEFER W S, et al. Constraining the size of the South Pole-Aitken Basin impact[J]. Icarus, 2012, 220(2): 730-743.
DOI URL |
[39] |
HURWITZ D M, KRING D A. Differentiation of the South Pole-Aitken Basin impact melt sheet: implications for lunar exploration[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1110-1133.
DOI URL |
[40] | PIETERS C M, HEAD J W, GADDIS L, et al. Rock types of South Pole-Aitken basin and extent of basaltic volcanism[J]. Journal of Geophysical Research: Planets, 2001, 106(E11):28001-28022. |
[41] |
SHEARER C K, PAPIKE J J. Early crustal building processes on the moon: models for the petrogenesis of the magnesian suite[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3445-3461.
DOI URL |
[42] |
SHEARER C K, ELARDO S M, PETRO N E, et al. Origin of the lunar Highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective[J]. American Mineralogist, 2015, 100(1): 294-325.
DOI URL |
[43] |
XU X Q, HUI H J, CHEN W, et al. Formation of lunar Highlands anorthosites[J]. Earth and Planetary Science Letters, 2020, 536: 116138.
DOI URL |
[44] |
SCHULTZ P H, CRAWFORD D A. Origin and implications of non-radialimbrium sculpture on the moon[J]. Nature, 2016, 535(7612): 391-394.
DOI |
[45] |
SCHULTZ P H. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan[J]. Journal of Geophysical Research, 1992, 97(E10): 16183.
DOI URL |
[46] |
PIERAZZO E, MELOSH H J. Understanding oblique impacts from experiments, observations, and modeling[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 141-167.
PMID |
[47] | XU L Y, XIE M G. Ejectathickness distribution of the Schrödinger Basin on the moon[J]. Journal of Geophysical Research: Planets, 2020, 125(12): e2020JE006506. |
[48] | CINTALA M J, GRIEVE R A F. Scaling impact melting and crater dimensions: implications for the lunar cratering record[J]. Meteoritics & Planetary Science, 1998, 33(4): 889-912. |
[49] | CINTALA M J, GRIEVE R A F. Scaling impact melting and crater dimensions: implications for the lunar cratering record[J]. Meteoritics & Planetary Science, 1998, 33(6): 1343. |
[50] | FASSETT C I, HEAD J W, SMITH D E, et al. Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: implications for multi-ring basin formation[J]. Geophysical Research Letters, 2011, 38(17): L17201. |
[51] |
GARRICK-BETHELL I, ZUBER M T. Elliptical structure of the lunar South Pole-Aitken Basin[J]. Icarus, 2009, 204(2): 399-408.
DOI URL |
[52] | CROFT S K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation[J]. Proceedings of Lunar and Planetary Science Conference, 1980, 11:2347-2378. |
[53] |
MCGETCHIN T R, SETTLE M, HEAD J W. Radial thickness variation in impact crater ejecta: implications for lunar basin deposits[J]. Earth and Planetary Science Letters, 1973, 20(2): 226-236.
DOI URL |
[54] |
ANDREWS-HANNA J C. The origin of the non-mare mascon gravity anomalies in lunar basins[J]. Icarus, 2013, 222(1): 159-168.
DOI URL |
[55] |
SCHULTZ P H. Floor-fractured lunar craters[J]. The Moon, 1976, 15(3/4): 241-273.
DOI URL |
[56] |
WICHMAN R W, SCHULTZ P H. Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: implications of crater modification by viscous relaxation and igneous intrusion models[J]. Journal of Geophysical Research, 1995, 100(E10): 21201.
DOI URL |
[57] |
WICHMAN R W, SCHULTZ P H. Crater-centered laccoliths on the moon: modeling intrusion depth and magmatic pressure at the crater taruntius[J]. Icarus, 1996, 122(1): 193-199.
DOI URL |
[1] | XU Kejuan, DING Xiaozhong, HAN Kunying, LIU Jingwen, LING Zongcheng, PANG Jianfeng, WANG Ying. Compilation of the geological map of the Petavius quadrangle of the Moon (LQ-21) and study on the regional geological evolution [J]. Earth Science Frontiers, 2022, 29(2): 354-369. |
[2] | OU Yang-Zi-Yuan, LIU Jian-Zhong. The origin and evolution of the Moon and its geological mapping. [J]. Earth Science Frontiers, 2014, 21(6): 1-6. |
[3] | CHEN Jian-Peng, WANG Xiang, WANG Nan, LI Jing, YAO Mei-Juan, LI Hong-Ke. The lunar geological mapping based on Chang’e data: Serenitatis-Tranquillitatis area as an example [J]. Earth Science Frontiers, 2014, 21(6): 7-18. |
[4] | Ding-Xiao-Zhong, WANG Liang, HAN Kun-Yang, LONG Jian-Feng, LIU Jian-Zhong, GUO Di-Jun, DING Wei-Cui, JU Yuan-Jing. The lunar digital geological mapping based on ArcGIS:Taking the Arctic region as an example [J]. Earth Science Frontiers, 2014, 21(6): 19-30. |
[5] | . Compilation of the geological map of Sinus Iridum Quadrangle of the Moon(LQ-4). [J]. Earth Science Frontiers, 2012, 19(6): 15-24. |
[6] | . A study of digital lunar geological mapping (Sinus Iridum Quadrangle) based on ArcGIS. [J]. Earth Science Frontiers, 2012, 19(6): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||