Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 216-226.DOI: 10.13745/j.esf.sf.2023.5.22
Previous Articles Next Articles
WANG Ziye1,2(), ZUO Renguang1,*(
)
Received:
2022-12-20
Revised:
2023-02-14
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data[J]. Earth Science Frontiers, 2023, 30(5): 216-226.
Fig.4 Spectral curves derived from ASTER image (a) and chemical composition graphs (b) for Himalayan leucogranites and Cambrian granite gneiss. Adapted from [39].
Fig.6 Fe2O3 concentration layer from grid survey (a) and ASTER false color composite image bands 3, 2, 1 (b) of the Cuonadong dome. Adapted from [39].
Fig.8 Lithological classification of the Cuonadong dome by remote sensing. (a) Composite image combining ASTER and Sentinel-2 remote sensing images. (b) ASTER image alone (adapted from [37]).
岩性单元 | ASTER影像+ 随机森林[ | ASTER影像+地球化学数据+ 随机森林[ | ASTER影像+地球化学+航磁数据+ 全卷积神经网络[ |
---|---|---|---|
侏罗系砂岩、板岩 | 97.0% | 98.1% | 99.0% |
下古生界大理岩 | 39.7% | 70.0% | 83.0% |
三叠系砂岩、板岩 | 51.9% | 91.3% | 95.0% |
寒武纪花岗质片麻岩 | 65.6% | 85.5% | 94.0% |
古生代黑云母石英片岩 | 54.5% | 80.77% | 92.0% |
第四纪地层 | 84.9% | 91.2% | 94.0% |
喜马拉雅淡色花岗岩 | 75.3% | 87.8% | 96.0% |
总分精度 | 85.75% | 93.16% | 96.0% |
Table 1 Quantitative performance evaluation of three lithological classification methods for each lithological unit of the Cuonadong dome. Adapted from [37,39,45].
岩性单元 | ASTER影像+ 随机森林[ | ASTER影像+地球化学数据+ 随机森林[ | ASTER影像+地球化学+航磁数据+ 全卷积神经网络[ |
---|---|---|---|
侏罗系砂岩、板岩 | 97.0% | 98.1% | 99.0% |
下古生界大理岩 | 39.7% | 70.0% | 83.0% |
三叠系砂岩、板岩 | 51.9% | 91.3% | 95.0% |
寒武纪花岗质片麻岩 | 65.6% | 85.5% | 94.0% |
古生代黑云母石英片岩 | 54.5% | 80.77% | 92.0% |
第四纪地层 | 84.9% | 91.2% | 94.0% |
喜马拉雅淡色花岗岩 | 75.3% | 87.8% | 96.0% |
总分精度 | 85.75% | 93.16% | 96.0% |
[1] | 蒋少涌, 温汉捷, 许成, 等. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 2019, 33(2): 112-118. |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[3] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. |
[4] | 莫宣学. 青藏高原地质研究的回顾与展望[J]. 中国地质, 2010, 37(4): 841-853. |
[5] |
LE FORT P, CUNEY M, DENIEL C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1/2/3): 39-57.
DOI URL |
[6] |
GUO Z F, WILSON M. The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2): 360-376.
DOI URL |
[7] |
WU F Y, LIU X C, LIU Z C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352/353: 105319.
DOI URL |
[8] |
MA L, WANG Q, KERR A C, et al.Paleocene (c.62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back?[J]. Journal of Petrology, 2017, 58(11): 2089-2114.
DOI URL |
[9] |
CAO H W, PEI Q M, SANTOSH M, et al. Himalayan leucogranites: a review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 2022, 234: 104229.
DOI URL |
[10] |
CAO H W, LI G M, ZHANG R Q, et al. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research, 2021, 92: 72-101.
DOI URL |
[11] | LIU Z C, WU F Y, DING L, et al. Highly fractionated late Eocene (-35 Ma) leucogranite in the xiaru dome, Tethyan Himalaya, South Tibet[J]. Lithos, 2016, 240/241/242/243: 337-354. |
[12] | 赵俊兴, 何畅通, 施睿哲, 等. 西藏雅拉香波穹窿淡色花岗岩-伟晶岩矿物学特征: 对稀有金属成矿指示意义[J]. 岩石学报, 2022, 38(7): 1981-2002. |
[13] | 张志, 李光明, 张林奎. 西藏喜马拉雅带稀有金属矿勘查与研究进展[J]. 沉积与特提斯地质, 2022, 42(2): 176-188. |
[14] | 吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276. |
[15] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[16] | 秦克章, 周起凤, 赵俊兴, 等. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 2021, 95(10): 3146-3162. |
[17] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
[18] | 梁维, 李光明, 张林奎, 等. 藏南错那洞铍稀有多金属成矿时代: 来自热液白云母Ar-Ar年龄的约束[J]. 沉积与特提斯地质, 2020, 40(1): 76-81. |
[19] | 李光明, 张林奎, 张志, 等. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 2021, 41(2): 351-360. |
[20] | 李光明, 付建刚, 郭伟康, 等. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 2022, 41(6): 1109-1119. |
[21] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4): 1003-1008. |
[22] | 曹华文, 李光明, 张林奎, 等. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 2022, 42(2): 189-211. |
[23] |
GAO L E, ZENG L S, ZHAO L H, et al. Geochemical behavior of rare metals and high field strength elements during granitic magma differentiation: a record from the Borong and Malashan Gneiss Domes, Tethyan Himalaya, southern Tibet[J]. Lithos, 2021, 398/399: 106344.
DOI URL |
[24] |
夏祥标, 李光明, 张林奎, 等. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向[J]. 地学前缘, 2022, 29(1): 93-106.
DOI |
[25] | 黄勇, 付建刚, 李光明, 等. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现[J]. 地球科学, 2019, 44(7): 2197-2206. |
[26] | 高利娥, 曾令森, 胡古月, 等. 藏南拿日雍措片麻岩穹窿淡色花岗岩稀有金属的富集[J]. 地球科学, 2019, 44(6): 1860-1875. |
[27] | 周起凤, 秦克章, 何畅通, 等. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义[J]. 岩石学报, 2021, 37(11): 3305-3324. |
[28] | 孟贵祥, 吕庆田, 严加永, 等. “穿透性” 探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5): 637-650. |
[29] | 焦彦杰, 黄旭日, 李光明, 等. 藏南扎西康矿集区深部结构与成矿: 来自地球物理的证据[J]. 地球科学, 2019(6): 2117-2128. |
[30] | 樊文鑫, 李光明, 焦彦杰, 等. 重磁场特征对西藏扎西康矿集区构造格架与成矿的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1741-1754. |
[31] | 樊文鑫, 李光明, 梁生贤. 西藏扎西康铅锌多金属矿床控矿构造的电性特征及找矿预测[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1709-1719. |
[32] | 薛帅, 卢占武, 李文辉, 等. 北喜马拉雅错那洞穹窿深部三维电性结构及其构造意义[J]. 中国科学: 地球科学, 2022, 52(8): 1516-1531. |
[33] |
WANG Z Y, ZUO R G, DONG Y N. Mapping Himalayan leucogranites using a hybrid method of metric learning and support vector machine[J]. Computers and Geosciences, 2020, 138: 104455.
DOI URL |
[34] |
HUNT G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3): 501-513.
DOI URL |
[35] | CLARK R N. Spectroscopy of rocks and minerals, and principles of spectroscopy[M]. New York: Wiley, 1999. |
[36] |
WATTS D R, HARRIS N B W, THE NASA GLENN SOARS Working Group. Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios[J]. Geological Society of America Bulletin, 2005, 117(7/8): 879-886.
DOI URL |
[37] |
WANG Z Y, ZUO R G, DONG Y N. Mapping of Himalaya leucogranites based on ASTER and sentinel-2A datasets using a hybrid method of metric learning and random forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1925-1936.
DOI URL |
[38] | 刘星, 胡光道. 多源数据融合技术在成矿预测中的应用[J]. 地球学报, 2003, 24(5): 463-468. |
[39] |
WANG Z Y, ZUO R G, JING L H. Fusion of geochemical and remote-sensing data for lithological mapping using random forest metric learning[J]. Mathematical Geosciences, 2021, 53(6): 1125-1145.
DOI |
[40] | 黄理善, 李学彪, 荆林海, 等. 基于遥感手段的高寒山区矿产资源远景区快速圈定与综合评价技术集成[J]. 中国地质, 2022, 49(1): 253-270. |
[41] | 王子烨. 基于测度学习的喜马拉雅淡色花岗岩岩体识别[D]. 武汉: 中国地质大学(武汉), 2020. |
[42] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
DOI |
[43] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
DOI PMID |
[44] |
WANG Z Y, ZUO R G, YANG F F. Geological mapping using direct sampling and a convolutional neural network based on geochemical survey data[J]. Mathematical Geosciences, 2022, 55(7): 1-24.
DOI |
[45] |
WANG Z Y, ZUO R G, LIU H. Lithological mapping based on fully convolutional network and multi-source geological data[J]. Remote Sensing, 2021, 13(23): 4860.
DOI URL |
[46] |
SHIRMARD H, FARAHBAKHSH E, HEIDARI E, et al. A comparative study of convolutional neural networks and conventional machine learning models for lithological mapping using remote sensing data[J]. Remote Sensing, 2022, 14(4): 819.
DOI URL |
[47] |
CARDOSO-FERNANDES J, TEODORO A C, LIMA A, et al. Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites[J]. Remote Sensing, 2020, 12(14): 2319.
DOI URL |
[1] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[2] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[3] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[4] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[5] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[6] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[7] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[8] | ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao. Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian [J]. Earth Science Frontiers, 2021, 28(3): 221-235. |
[9] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[10] | ZHANG Qi,JIAO Shoutao,LI Mingchao,ZHU Yueqin,HAN Shuai,LIU Xuelong, JIN Weijun,CHEN Wanfeng,LIU Xinyu. Applicability of quantum entanglement technology in geology [J]. Earth Science Frontiers, 2019, 26(4): 159-169. |
[11] | ZUO Renguang. Exploration geochemical data mining and weak geochemical anomalies identification [J]. Earth Science Frontiers, 2019, 26(4): 67-75. |
[12] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[13] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
[14] | LUO Jianmin,ZHANG Qi. Big data pioneers new ways of geoscience research: identifying relevant relationships to enhance research feasibility [J]. Earth Science Frontiers, 2019, 26(4): 6-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||