[1] |
ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing.
Machine learning-based approach for adakitic rocks tectonic setting determination
[J]. Earth Science Frontiers, 2024, 31(4): 417-428.
|
[2] |
ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan.
Rock and mineral thin section identification based on deep learning
[J]. Earth Science Frontiers, 2024, 31(3): 498-510.
|
[3] |
LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui.
Machine learning: A new approach to intelligent exploration of seafloor mineral resources
[J]. Earth Science Frontiers, 2024, 31(3): 520-529.
|
[4] |
SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang.
Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques
[J]. Earth Science Frontiers, 2024, 31(3): 530-540.
|
[5] |
WANG Ziye, ZUO Renguang.
Mapping Himalayan leucogranites by machine learning using multi-source data
[J]. Earth Science Frontiers, 2023, 30(5): 216-226.
|
[6] |
SONG Xuanyu, XU Min, KANG Shichang, SUN Liping.
Modeling of hydrological processes in cryospheric watersheds based on machine learning
[J]. Earth Science Frontiers, 2023, 30(4): 451-469.
|
[7] |
TANG Xuan, ZHENG Fengzan, LIANG Guodong, MA Zijie, ZHANG Jiazheng, WANG Yufang, ZHANG Tongwei.
Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China
[J]. Earth Science Frontiers, 2023, 30(3): 110-123.
|
[8] |
ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng.
Machine learning-based approach for zircon classification and genesis determination
[J]. Earth Science Frontiers, 2022, 29(5): 464-475.
|
[9] |
HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin.
Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm
[J]. Earth Science Frontiers, 2022, 29(3): 284-291.
|
[10] |
ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao.
Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian
[J]. Earth Science Frontiers, 2021, 28(3): 221-235.
|
[11] |
ZUO Renguang.
Data science-based theory and method of quantitative prediction of mineral resources
[J]. Earth Science Frontiers, 2021, 28(3): 49-55.
|
[12] |
ZHU Pingping, CHENG Qiuming, ZHOU Yuanzhi, ZHANG Yuwei, SUN Jiazhen.
Plate reconstruction based on fractal theory
[J]. Earth Science Frontiers, 2020, 27(4): 150-157.
|
[13] |
ZHUANG Tianming, SONG Yucai, HOU Zengqian, ZHANG Chong.
Fractal analysis of breccias in the super-large Jinding Pb-Zn deposit and its geological implication
[J]. Earth Science Frontiers, 2020, 27(2): 320-331.
|
[14] |
WANG Yanyan,HE Yujiang.
The indicative effect of soil fractal structure on its hydraulic properties
[J]. Earth Science Frontiers, 2019, 26(6): 66-74.
|
[15] |
LUO Jianmin,WANG Xiaowei,ZHANG Qi,SONG Bingtian,YANG Zhongming,ZHAO Yanqing.
Application of geological big data to quantitative target area optimization for regional mineral prospecting in China
[J]. Earth Science Frontiers, 2019, 26(4): 76-83.
|