Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 520-529.DOI: 10.13745/j.esf.sf.2023.5.90
Previous Articles Next Articles
LIU Yang1,2(), LI Sanzhong1,2, ZHONG Shihua1,2,*(
), GUO Guanghui1,2, LIU Jiaqing1,2, NIU Jinghui1,2, XUE Zimeng1,2, ZHOU Jianping1,2, DONG Hao1,2, SUO Yanhui1,2
Received:
2022-11-23
Revised:
2023-04-13
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources[J]. Earth Science Frontiers, 2024, 31(3): 520-529.
Fig.2 Schematic representation of supervised machine learning methods (a) Logistic regression; (b) Support vector machine; (c) Random forest; (d) Deep neural network.
[1] | PETERSEN S. Marine mineral resources[M]//HARFF J, MESCHEDE M, PETERSEN S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 475-480. |
[2] | PETERSEN S, KRÄTSCHELL A, AUGUSTIN N, et al. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175-187. |
[3] | RONA P A. The changing vision of marine minerals[J]. Ore Geology Reviews, 2007, 33(3): 618-666. |
[4] | 石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318. |
[5] | 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31. |
[6] | HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169. |
[7] | 杨燕子, 陈华勇. 大洋富钴结壳研究进展及展望[J]. 大地构造与成矿学, 2023, 47(1): 1-19. |
[8] | HANNINGTON M, JAMIESON J, MONECKE T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158. |
[9] | KVENVOLDEN K. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. |
[10] | BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. |
[11] | DAI H C, MACBETH C. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophysical Journal International, 1995, 120(3): 758-774. |
[12] | DOWLA F, TAYLOR S R, ANDERSON R W. Seismic discrimination with artificial neural networks: preliminary results with regional spectral data[J]. Bulletin of the Seismological Society of America, 1990, 80(5): 1346-1373. |
[13] | DYSART P, PULLI J. Regional seismic event classification at the NORESS array: seismological measurements and the use of trained neural networks[J]. Bulletin of the Seismological Society of America, 1990, 80(6B): 1910-1933. |
[14] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777. |
[15] | 周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018. |
[16] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[17] | COX D R. The regression analysis of binary sequences[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1959, 21(1): 238. |
[18] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[19] |
VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
DOI PMID |
[20] | BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. |
[21] | CHANG C C, LIN C J. LIBSVM[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. |
[22] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[23] | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
[24] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[25] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[26] | ABDEYAZDAN M. Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm[J]. The Journal of Supercomputing, 2014, 68(2): 574-598. |
[27] | FRADKIN D. Within-class and unsupervised clustering improve accuracy and extract local structure for supervised classification[D]. New Brunswick: Rutgers, The State University of New Jersey, 2006. |
[28] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016. |
[29] | BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4): 291-294. |
[30] | ZHAI J H, ZHANG S F, CHEN J F, et al. Autoencoder and its various variants[C]//Proceedings of 2018 IEEE international conference on systems, man, and cybernetics (SMC). Miyazaki: IEEE, 2018: 415-419. |
[31] | LIM B, YU H, YOON D, et al. Machine learning derived AVO analysis on marine 3D seismic data over gas reservoirs near South Korea[J]. Journal of Petroleum Science and Engineering, 2021, 197: 108105. |
[32] | ZHU L Q, WEI J G, WU S G, et al. Application of unlabelled big data and deep semi-supervised learning to significantly improve the logging interpretation accuracy for deep-sea gas hydrate-bearing sediment reservoirs[J]. Energy Reports, 2022, 8: 2947-2963. |
[33] | MONDAL I, SINGH H K. Core-log integration and application of machine learning technique for better reservoir characterisation of Eocene carbonates, Indian offshore[J]. Energy Geoscience, 2022, 3(1): 49-62. |
[34] | YOU J C, CAO J X, WANG X J, et al. Shear wave velocity prediction based on LSTM and its application for morphology identification and saturation inversion of gas hydrate[J]. Journal of Petroleum Science and Engineering, 2021, 205: 109027. |
[35] | PANG Y M, SHI B B, GUO X W, et al. Source-reservoir relationships and hydrocarbon charging history in the central uplift of the South Yellow Sea Basin (East Asia): constrained by machine learning procedure and basin modeling[J]. Marine and Petroleum Geology, 2021, 123: 104731. |
[36] | HAN F L, ZHANG H B, RUI J W, et al. Multiple point geostatistical simulation with adaptive filter derived from neural network for sedimentary facies classification[J]. Marine and Petroleum Geology, 2020, 118: 104406. |
[37] | BROWN N, ROUBÍČKOVÁ A, LAMPAKI I, et al. Machine learning on Crays to optimize petrophysical workflows in oil and gas exploration[J]. Concurrency and Computation: Practice and Experience, 2020, 32(20): e5655. |
[38] | MUKHERJEE B, SAIN K. Prediction of reservoir parameters in gas hydrate sediments using artificial intelligence (AI): a case study in Krishna-Godavari Basin (NGHP Exp-02)[J]. Journal of Earth System Science, 2019, 128(7): 199. |
[39] | CHONG L, SINGH H, CREASON C G, et al. Application of machine learning to characterize gas hydrate reservoirs in Mackenzie Delta (Canada) and on the Alaska north slope (USA)[J]. Computational Geosciences, 2022, 26(5): 1151-1165. |
[40] | SINGH H, SEOL Y, MYSHAKIN E M. Prediction of gas hydrate saturation using machine learning and optimal set of well-logs[J]. Computational Geosciences, 2021, 25(1): 267-283. |
[41] | LI C, LIU X. Research on the estimate of gas hydrate saturation based on LSTM recurrent neural network[J]. Energies, 2020, 13(24): 6536. |
[42] | LEE J, BYUN J, KIM B, et al. Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 326-337. |
[43] | DUTKIEWICZ A, JUDGE A, MÜLLER R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean[J]. Geology, 2020, 48(3): 293-297. |
[44] | HARI V N, KALYAN B, CHITRE M, et al. Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 997-1014. |
[45] | JULIANI C, JULIANI E. Deep learning of terrain morphology and pattern discovery via network-based representational similarity analysis for deep-sea mineral exploration[J]. Ore Geology Reviews, 2021, 129: 103936. |
[46] | MIMURA K, NAKAMURA K, TAKAO K, et al. Automated detection of hydrothermal emission signatures from multi-beam echo sounder images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2703-2710. |
[47] | GAZIS I Z, GREINERT J. Importance of spatial autocorrelation in machine learning modeling of polymetallic nodules, model uncertainty and transferability at local scale[J]. Minerals, 2021, 11(11): 1172. |
[48] | SCHOENING T, KUHN T, NATTKEMPER T. Estimation of poly-metallic nodule coverage in benthic images[C]//Proceedings of the 41st conference of the Underwater Mining Institute (UMI). Shanghai: UMI, 2012: 15-20. |
[49] | 邓君兰, 董澧辉, 宋伟, 等. 基于Sea-thru和Mask R-CNN的深海多金属结核图像处理[J]. 矿冶工程, 2022, 42(2): 9-13. |
[50] | PRABHAKARAN K, VARSHNEY N, RAMESH R, et al. Underwater image and video processing to detect polymetallic nodule abundance using haar-cascade and template matching feature[C]//Proceedings of OCEANS 2022-Chennai. Chennai: IEEE, 2022: 1-6. |
[51] | GAZIS I Z, SCHOENING T, ALEVIZOS E, et al. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning[J]. Biogeosciences, 2018, 15(23): 7347-7377. |
[52] | HU G, ZHAO H M, HAN F L, et al. Recognition of cobalt-rich crusts based on multi-classifier fusion in seafloor mining environments[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1205-1214. |
[53] | HONG F, HUANG M Y, FENG H H, et al. First demonstration of recognition of manganese crust by deep-learning networks with a parametric acoustic probe[J]. Minerals, 2022, 12(2): 249. |
[54] | NEETTIYATH U, SATO T, SANGEKAR M, et al. Identification of manganese crusts in 3D visual reconstructions to filter geo-registered acoustic sub-surface measurements[C]//Proceedings of OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1-6. |
[55] | NEETTIYATH U, THORNTON B, SANGEKAR M, et al. An AUV based method for estimating hectare-scale distributions of deep sea cobalt-rich manganese crust deposits[C]//Proceedings of OCEANS 2019-Marseille. Marseille: IEEE, 2019: 1-6. |
[56] | LIU L S, LU J L, TAO C H, et al. Fuzzy forest machine learning predictive model for mineral prospectivity: a case study on southwest Indian ridge 48. 7°E-50. 5°E[J]. Natural Resources Research, 2022, 31(1): 99-116. |
[57] | ZHANG X N, SONG S J, LI J B, et al. Robust LS-SVM regression for ore grade estimation in a seafloor hydrothermal sulphide deposit[J]. Acta Oceanologica Sinica, 2013, 32(8): 16-25. |
[58] | ZHANG X N, SONG S J, WU C. Robust Bayesian classification with incomplete data[J]. Cognitive Computation, 2013, 5(2): 170-187. |
[1] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[2] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[3] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[4] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[5] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[6] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[7] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[8] | ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao. Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian [J]. Earth Science Frontiers, 2021, 28(3): 221-235. |
[9] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[10] | ZHANG Qi,JIAO Shoutao,LI Mingchao,ZHU Yueqin,HAN Shuai,LIU Xuelong, JIN Weijun,CHEN Wanfeng,LIU Xinyu. Applicability of quantum entanglement technology in geology [J]. Earth Science Frontiers, 2019, 26(4): 159-169. |
[11] | ZUO Renguang. Exploration geochemical data mining and weak geochemical anomalies identification [J]. Earth Science Frontiers, 2019, 26(4): 67-75. |
[12] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[13] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
[14] | LUO Jianmin,ZHANG Qi. Big data pioneers new ways of geoscience research: identifying relevant relationships to enhance research feasibility [J]. Earth Science Frontiers, 2019, 26(4): 6-12. |
[15] | . Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. [J]. Earth Science Frontiers, 2015, 22(6): 125-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||