Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 498-510.DOI: 10.13745/j.esf.sf.2023.6.7
Previous Articles Next Articles
ZHANG Lijun1,2,3(), LU Wenhao2, ZHANG Jiandong2,*(
), PENG Guangxiong2, BU Jiancai1, TANG Kai1, XIE Jiancheng1, XU Zhibin1, YANG Haiyan1
Received:
2022-12-30
Revised:
2023-05-14
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning[J]. Earth Science Frontiers, 2024, 31(3): 498-510.
类型 | 数量 | 单位 |
---|---|---|
白云岩 | 155 | 张 |
灰岩 | 151 | 张 |
砂岩 | 332 | 张 |
总体 | 638 | 张 |
Table 1 Summary of rock thin section microphotography
类型 | 数量 | 单位 |
---|---|---|
白云岩 | 155 | 张 |
灰岩 | 151 | 张 |
砂岩 | 332 | 张 |
总体 | 638 | 张 |
类型 | 数量 | 单位 |
---|---|---|
橄榄石 | 174 | 张 |
普通辉石 | 184 | 张 |
角闪石 | 106 | 张 |
黑云母 | 244 | 张 |
斜长石 | 112 | 张 |
红柱石 | 93 | 张 |
十字石 | 122 | 张 |
石榴子石 | 95 | 张 |
阳起石 | 34 | 张 |
鲕粒 | 103 | 张 |
总体 | 1 267 | 张 |
Table 2 Summary of mineral thin section microphotography
类型 | 数量 | 单位 |
---|---|---|
橄榄石 | 174 | 张 |
普通辉石 | 184 | 张 |
角闪石 | 106 | 张 |
黑云母 | 244 | 张 |
斜长石 | 112 | 张 |
红柱石 | 93 | 张 |
十字石 | 122 | 张 |
石榴子石 | 95 | 张 |
阳起石 | 34 | 张 |
鲕粒 | 103 | 张 |
总体 | 1 267 | 张 |
训练集图像 | 分类识别概率/% | ||
---|---|---|---|
灰岩 | 砂岩 | 白云岩 | |
灰岩 | 97.642 | 0.562 | 2.457 |
砂岩 | 1.125 | 98.214 | 0.661 |
白云岩 | 1.233 | 1.224 | 97.543 |
Table 3 Recognition probability of microphotography classification in rock training set
训练集图像 | 分类识别概率/% | ||
---|---|---|---|
灰岩 | 砂岩 | 白云岩 | |
灰岩 | 97.642 | 0.562 | 2.457 |
砂岩 | 1.125 | 98.214 | 0.661 |
白云岩 | 1.233 | 1.224 | 97.543 |
训练集 图像 | 分类识别概率/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
橄榄石 | 辉石 | 角闪石 | 黑云母 | 斜长石 | 红柱石 | 十字石 | 石榴子石 | 阳起石 | 鲕粒 | |
橄榄石 | 98.863 | 0.31 | 0.128 | 0.357 | 0.275 | 0 | 0.382 | 0.532 | 0.457 | 0.028 |
辉石 | 0.321 | 98.61 | 0.41 | 0.146 | 0.246 | 0.532 | 0.253 | 0.248 | 0.254 | 0.148 |
角闪石 | 0.691 | 0.105 | 97.932 | 0.213 | 0.183 | 0.425 | 0.537 | 0.396 | 0.098 | 0.258 |
黑云母 | 0.241 | 0.261 | 0.025 | 98.254 | 0.261 | 0.216 | 0.429 | 0 | 0.248 | 0.427 |
斜长石 | 0.032 | 0.327 | 0.251 | 0.023 | 98.124 | 0.527 | 0.053 | 0.268 | 0.014 | 0.658 |
红柱石 | 0.124 | 0.141 | 0.521 | 0.245 | 0 | 96.534 | 0.293 | 0.421 | 0.054 | 0.320 |
十字石 | 0.231 | 0 | 0.326 | 0.612 | 0.342 | 0.623 | 97.632 | 0.134 | 0.147 | 0.247 |
石榴子石 | 0.052 | 0.056 | 0.153 | 0 | 0.279 | 0.495 | 0.327 | 97.894 | 0.014 | 0.089 |
阳起石 | 0.04 | 0.047 | 0.059 | 0.125 | 0.124 | 0.325 | 0.058 | 0.051 | 98.673 | 0.013 |
鲕石 | 0 | 0.143 | 0.195 | 0.025 | 0.166 | 0.323 | 0.036 | 0.056 | 0.041 | 93.812 |
Table 4 Recognition probability of microphotography classification in mineral training set
训练集 图像 | 分类识别概率/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
橄榄石 | 辉石 | 角闪石 | 黑云母 | 斜长石 | 红柱石 | 十字石 | 石榴子石 | 阳起石 | 鲕粒 | |
橄榄石 | 98.863 | 0.31 | 0.128 | 0.357 | 0.275 | 0 | 0.382 | 0.532 | 0.457 | 0.028 |
辉石 | 0.321 | 98.61 | 0.41 | 0.146 | 0.246 | 0.532 | 0.253 | 0.248 | 0.254 | 0.148 |
角闪石 | 0.691 | 0.105 | 97.932 | 0.213 | 0.183 | 0.425 | 0.537 | 0.396 | 0.098 | 0.258 |
黑云母 | 0.241 | 0.261 | 0.025 | 98.254 | 0.261 | 0.216 | 0.429 | 0 | 0.248 | 0.427 |
斜长石 | 0.032 | 0.327 | 0.251 | 0.023 | 98.124 | 0.527 | 0.053 | 0.268 | 0.014 | 0.658 |
红柱石 | 0.124 | 0.141 | 0.521 | 0.245 | 0 | 96.534 | 0.293 | 0.421 | 0.054 | 0.320 |
十字石 | 0.231 | 0 | 0.326 | 0.612 | 0.342 | 0.623 | 97.632 | 0.134 | 0.147 | 0.247 |
石榴子石 | 0.052 | 0.056 | 0.153 | 0 | 0.279 | 0.495 | 0.327 | 97.894 | 0.014 | 0.089 |
阳起石 | 0.04 | 0.047 | 0.059 | 0.125 | 0.124 | 0.325 | 0.058 | 0.051 | 98.673 | 0.013 |
鲕石 | 0 | 0.143 | 0.195 | 0.025 | 0.166 | 0.323 | 0.036 | 0.056 | 0.041 | 93.812 |
[1] | KERR P F, ROGERS A F. Optical mineralogy[M]. 4th ed. New York: McGraw-Hill, 1977. |
[2] | 常丽华, 曹林, 高福红. 火成岩鉴定手册[M]. 武汉: 地质出版社, 2009. |
[3] | 陈曼云, 金巍, 郑常青. 变质岩鉴定手册[M]. 北京: 地质出版社, 2009. |
[4] | LAUNEAU P, CRUDEN A R, BOUCHEZ J L. Mineral recognition in digital images of rocks: a new approach using multichannel classification[J]. The Canadian Mineralogist, 1994, 32(4): 919-933. |
[5] | 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1): 26-40. |
[6] | 李娟, 孙惠兰, 侯庆香. XRD 岩性快速识别方法研究[J]. 中国石油石化, 2017, 10: 61-62. |
[7] | GOTTLIEB P, WILKIE G, SUTHERLAND D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of the Minerals, Metals & Materials Society, 2000, 52(4): 24-25. |
[8] | NIE J S, PENG W B. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 2014, 13: 71-75. |
[9] | TOVEY N K, KRINSLEY D H. Mineralogical mapping of scanning electron micrographs[J]. Sedimentary Geology, 1991, 75(1/2): 109-123. |
[10] | BIAO F, GUO R X, JAMES C H, et al. Recognition and (semi-)quantitative analysis of REE-bearing minerals in coal using automated scanning electron microscopy[J]. International Journal of Coal Geology, 2024, 282: 104443. |
[11] | FANDRICH R, YING G, BURROWS D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1-4): 310-320. |
[12] | LIANG L, FENG Y S, BI L L, et al. Identification of hydrothermal alteration and mineralization in the Sancha magmatic Cu-Ni-Au sulfide deposit, NW China: implications for timing and genesis of mineralization[J]. Ore Geology Reviews, 2022, 143: 104770. |
[13] | HRSTKA T, GOTTLIEB P, SKALA R, et al. Automated mineralogy and petrology-applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47-63. |
[14] | 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用: 以捷克泰思肯公司 TIMA 为例[J]. 矿床地质, 2021, 40(2): 345-368. |
[15] | 谢小敏, 李利, 袁秋云, 等. 应用 TIMA分析技术研究 Alum 页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50-60. |
[16] | 徐园园, 谢远云, 康春国, 等. 松花江早更新世水系演化: 来自 TIMA 矿物和地球化学的证据[J]. 地质科学, 2022, 57(1): 190-206. |
[17] | HOAL K O, STAMMER J G, APPLEBY S K, et al. Research in quantitative mineralogy: examples from diverse applications[J]. Minerals Engineering, 2009, 22(4): 402-408. |
[18] | PÉREZ-BARNUEVO L, PIRARD E, CASTROVIEJO R. Automated characterisation of intergrowth textures in mineral particles: a case study[J]. Minerals Engineering, 2013, 52(S1): 136-142. |
[19] | ESRA BAŞTÜRKCÜ, CEYDA ŞAVRAN, A EKREM YÜCE, et al. Revealing the effects of mechanical attrition applied on Eskisehir-Beylikova REE ore utilizing MLA[J]. Minerals Engineering, 2022, 186: 107733. |
[20] |
朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475.
DOI |
[21] |
慎国强, 王玉梅, 张繁昌, 等. 基于人工智能的川东北三叠系杂卤石地震识别[J]. 地学前缘, 2021, 28(6): 155-161.
DOI |
[22] | THOMPSON S, FUETEN F, BOCKUS D. Mineral identification using artificial neural networks and the rotating polarizer stage[J]. Computers & Geosciences, 2001, 27(9): 1081-1089. |
[23] | MAITRE J, BOUCHARD K, BÉDARD L. Mineral grains recognition using computer vision and machine learning[J]. Computers & Geosciences, 2019, 130: 84-93. |
[24] | RUBO R A, DE CARVALHO C C, MICHELON M F, et al. Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images[J]. Journal of Petroleum Science & Engineering, 2019, 183: 106382. |
[25] | 程国建, 李碧, 万晓龙, 等. 基于 SqueezeNet 卷积神经网络的岩石薄片图像分类研究[J]. 矿物岩石, 2021, 41(4): 94-101. |
[26] | 徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252. |
[27] | ZENG X, XIAO Y C, JI X H, et al. Mineral identification based on deep learning that combines image and MOHS hardness[J]. Minerals, 2021, 11(5): 506. |
[28] | 张野, 李明超, 韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34(11): 3244-3252. |
[29] | 郝慧珍, 顾庆, 胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 2021, 46(9): 3091-3106. |
[30] | ROSS B J, FUETEN F, YASHKIR D. Automatic mineral identification using genetic programming[J]. Machine Vision and Applications, 2001, 13(2): 61-69. |
[31] | RUISANCHEZ I, POTOKAR P, ZUPAN J, et al. Classification of energy dispersion X-ray spectra of mineralogical samples by artificial neural networks[J]. Journal of Chemical Information and Computer Sciences, 1996, 36(2): 214-220. |
[32] | ALIGHOLI S, KHAJAVI R, RAZMARA M. Automated mineral identification algorithm using optical properties of crystals[J]. Computers & Geosciences, 2015, 85: 175-183. |
[33] |
陈宗铭, 唐玄, 梁国栋, 等. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220.
DOI |
[34] | 徐圣嘉, 苏程, 朱孔阳, 等. 基于深度学习的岩石薄片矿物自动识别方法[J]. 浙江大学学报(理学版), 2022, 49(6): 743-752. |
[35] |
郭艳军, 周哲, 林贺洵, 等. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 2020, 27(5): 39-47.
DOI |
[36] | SU C, XU S J, ZHU K Y, et al. Rock classification in petrographic thin section images based on concatenated convolutional neural networks[J]. Earth Science Informatics, 2020, 13(4): 1477-1484. |
[37] | 赖文, 蒋璟鑫, 邱检生, 等. 南京大学岩石教学薄片显微图像数据集[J]. 中国科学数据, 2020, 5(3): 21-33. |
[38] | 白林, 魏昕, 刘禹, 等. 基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12): 2053-2058. |
[39] | LI N, HAO H, GU Q, et al. A transfer learning method for automatic identification of sandstone microscopic images[J]. Computers & Geosciences, 2017, 103: 111-121. |
[40] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
DOI PMID |
[41] | 谢涛. 基于深度学习的微细粒矿物识别研究[D]. 徐州: 中国矿业大学, 2020. |
[42] |
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515, 2565.
DOI |
[43] | TSUJI T, YAMAGUCHI H, ISHII T, et al. Mineral classification from quantitative X-ray maps using neural network: application to volcanic rocks[J]. Island Arc, 2010, 19(1): 105-119. |
[44] | 周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178. |
[45] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[46] | IMAMVERDIYEV Y, SUKHOSTAT L. Lithological facies classification using deep convolutional neural network[J]. Journal of Petroleum Science and Engineering, 2019, 174: 216-228. |
[1] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[2] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[3] | WAN Chengzhou, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral image recognition based on progressive deep learning across different granularity levels [J]. Earth Science Frontiers, 2024, 31(4): 112-118. |
[4] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[5] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[6] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[7] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[8] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[9] | JIANG Guo, ZHOU Kefa, WANG Jinlin, BAI Yong, SUN Guoqing, WANG Wei. Identification of lithium-beryllium granitic pegmatites based on deep learning [J]. Earth Science Frontiers, 2023, 30(5): 185-196. |
[10] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[11] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[12] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[13] | ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao. Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian [J]. Earth Science Frontiers, 2021, 28(3): 221-235. |
[14] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[15] | GUO Yanjun, ZHOU Zhe, LIN Hexun, LIU Xiaohui, CHEN Danqiu, ZHU Jiaqi, WU Junqi. The mineral intelligence identification method based on deep learning algorithms [J]. Earth Science Frontiers, 2020, 27(5): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||