Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 186-196.DOI: 10.13745/j.esf.sf.2021.2.3
Previous Articles Next Articles
LI Zhihong1(), WANG Guangcai2,*(), CAI Wutian1, LIU Fei2, HUANG Dandan2
Received:
2020-04-24
Revised:
2020-08-19
Online:
2021-09-25
Published:
2021-10-29
Contact:
WANG Guangcai
CLC Number:
LI Zhihong, WANG Guangcai, CAI Wutian, LIU Fei, HUANG Dandan. Reactive materials and structural design of PRB for remediation of a Cr(Ⅵ) contaminated sit[J]. Earth Science Frontiers, 2021, 28(5): 186-196.
材料类型 | 材料编号 | 粒径/目 | 原产地 | 材料价格/ (元·t-1) |
---|---|---|---|---|
还原铁粉 | IA IB IC | 20~40 | 河南巩义 河北石家庄 山西晋城 | 2 400 |
铸铁 | CID CIE CIG | 20~40 10~24 20~40 | 河南安阳 河北灵寿 河北灵寿 | |
沸石 | ZA ZB ZC | 20~40 | 河北承德 河北灵寿 河北灵寿 | 320 |
活性炭 | YCA YCB GCA | 20~40 10~24 20~40 | 河北承德 河北灵寿 河北灵寿 | 8 800 |
Table 1 Material information
材料类型 | 材料编号 | 粒径/目 | 原产地 | 材料价格/ (元·t-1) |
---|---|---|---|---|
还原铁粉 | IA IB IC | 20~40 | 河南巩义 河北石家庄 山西晋城 | 2 400 |
铸铁 | CID CIE CIG | 20~40 10~24 20~40 | 河南安阳 河北灵寿 河北灵寿 | |
沸石 | ZA ZB ZC | 20~40 | 河北承德 河北灵寿 河北灵寿 | 320 |
活性炭 | YCA YCB GCA | 20~40 10~24 20~40 | 河北承德 河北灵寿 河北灵寿 | 8 800 |
Fig.3 Results of batch experiments for Cr(Ⅵ) removal efficiency variation with material (a), material dosage (b), reaction time (c), and cast iron to active carbon ratio (d)
常量离子 | 平均浓度ρB/(mg·L-1) |
---|---|
Cr(Ⅵ) | 161.31 |
总Cr | 345.02 |
K+ | 2.53 |
Ca2+ | 189.49 |
Mg2+ | 161.23 |
Na+ | 390.33 |
Cl- | 235.79 |
| 173.90 |
| 981.44 |
| 590.56 |
Table 2 Results of column testing of chemical composition of inlet water
常量离子 | 平均浓度ρB/(mg·L-1) |
---|---|
Cr(Ⅵ) | 161.31 |
总Cr | 345.02 |
K+ | 2.53 |
Ca2+ | 189.49 |
Mg2+ | 161.23 |
Na+ | 390.33 |
Cl- | 235.79 |
| 173.90 |
| 981.44 |
| 590.56 |
Fig.11 Remediation effects of funnel-gate PRB on contaminated plume by adding a layer of gravel to the upstream and downstream (a) or using U-shaped PRB (b)
[1] | 李圣品, 刘菲, 黄国鑫, 等. 傍河型水源井氨氮阻断与去除工程设计案例分析[J]. 环境科学学报, 2015, 35(8):2471-2480. |
[2] | 田雷. 复合介质PRB去除地下水中氯代烃和苯系物混合污染研究[D]. 北京: 中国地质大学(北京), 2014. |
[3] |
PHILLIPS D H. Permeable reactive barriers: a sustainable technology for cleaning contaminated groundwater in developing countries[J]. Desalination, 2009, 248(1/2/3):352-359.
DOI URL |
[4] | 陆泗进, 王红旗. 地下水污染修复的可渗透性反应墙技术[J]. 上海环境科学, 2005, 24(6):231-236. |
[5] |
O’HANNESIN S F, GILLHAM R W. Long-term performance of an in-situ “iron wall” for remediation of VOCs[J]. Groundwater, 1998, 36(1):164-170.
DOI URL |
[6] |
YABUSAKI S, CANTRELL K, SASS B, et al. Multicomponent reactive transport in an in-situ zero-valent iron cell[J]. Environmental Science & Technology, 2001, 35(7):1493-1503.
DOI URL |
[7] |
MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science & Technology, 2003, 37(10):2302-2309.
DOI URL |
[8] | 黄园英, 刘菲, 鲁雅梅. 零价铁去除Cr(Ⅵ)的批试验研究[J]. 岩石矿物学杂志, 2003, 22(4):349-351. |
[9] | 李雅, 张增强, 唐次来, 等. Fe0去除地下水中六价铬的研究[J]. 中国农业大学学报, 2011, 16(2):160-164. |
[10] | 曾云嵘. PRB技术处理铀尾矿库渗漏地下水中锰的效果研究[D]. 抚州: 东华理工大学, 2017. |
[11] | 高阳阳, 刘国, 陈春梅, 等. 改性纳米铁/炭填充PRB去除地下水硝态氮研究[J]. 中国环境科学, 2016, 36(10):3019-3025. |
[12] | 董桂花. 零价铁PRB复合二氧化锰去除四环素的性能研究[D]. 济南: 山东大学, 2018. |
[13] | 钱程. PRB修复地下水中铀污染物的模拟试验研究[D]. 抚州: 东华理工大学, 2019. |
[14] | 何叶. 黄铁矿作为PRB填充材料吸附水中U(Ⅵ)的试验研究[D]. 衡阳: 南华大学, 2019. |
[15] | HOU G H, LIU F, LIU M Z, et al. Performance of a permeable reactive barrier for in-situ removal of ammonium in groundwater[J]. Water Science & Technology: Water Supply, 2014, 14(4):585-592. |
[16] | 滕应, 陈梦舫. 稀土尾矿区地下水污染风险评估与防控修复研究[M]. 北京: 科学出版社, 2016. |
[17] | 中国科学院南京土壤研究所宋昕团队. 原长沙铬盐厂可渗透反应墙(PRB)原位修复铬污染地下水[EB/OL].(2019-04-04)[2019-07-14]. http://www.rem-tech.cn/news/html/?526.html. |
[18] | BLOWES D W, GILLHAM R W, PTACEK C J, et al. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 1 design and installation[M]. Washington D C: United States Environmental Protection Agency, 1999. |
[19] |
GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2):41-71.
DOI URL |
[20] |
HUANG D D, WANG G C, LI Z H, et al. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system[J]. Environmental Science and Pollution Research, 2017, 24(22):18341-18354.
DOI URL |
[21] | 李思琪. Cr(Ⅵ)污染地下水修复的复合Fe0-PRB填料试验研究[D]. 福州: 福州大学, 2018. |
[22] |
WANNER C, ZINK S, EGGENBERGER U, et al. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling[J]. Journal of Contaminant Hydrology, 2012, 131(1/2/3/4):54-63.
DOI URL |
[23] | BLOWES D W, PTACEK C J, BENNER S G, et al. Treatment of dissolved metals using permeable reactive barriers[J]. Groundwater Quality: Remediation and Protection, 1998, 250:483-490. |
[24] |
COURCELLES B, MODARESSI-FARAHMAND-RAZAVI A, GOUVENOT D, et al. Influence of precipitates on hydraulic performance of permeable reactive barrier filters[J]. International Journal of Geomechanics, 2011, 11(2):142-151.
DOI URL |
[25] |
LI Z H, JONES H K, BOWMAN R S, et al. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science & Technology, 1999, 33(23):4326-4330.
DOI URL |
[26] |
SCHNEIDER R M, CAVALIN C F, BARROS M A S D, et al. Adsorption of chromium ions in activated carbon[J]. Chemical Engineering Journal, 2007, 132(1/2/3):355-362.
DOI URL |
[27] |
POWELL R M, PULS R W, HIGHTOWER S K, et al. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation[J]. Environmental Science & Technology, 1995, 29(8):1913-1922.
DOI URL |
[28] | TURNER M, DAVE N M, MODENA T, et al. Permeable reactive barriers: lessons learned/new directions[M]. Washington D C: Interstate Technology & Regulatory Council, 2005: 2-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||