[1] |
李海明, 陈鸿汉, 郑西来. 某城市工业区浅层地下水CAHs污染特征[J]. 地学前缘, 2005, 12(增刊1):132-138.
|
[2] |
中华人民共和国国土资源部和水利部, 全国国土资源标准化技术委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2018.
|
[3] |
吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8):2015-2024.
|
[4] |
SIEGRIST R L, CRIMI M, SIMPKIN T J, et al. ISCO status and future directions[M]//SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 535-545.
|
[5] |
杨乐巍, 张岳, 李书鹏, 等. 原位化学氧化高压注射修复优化设计与应用案例分析[J]. 环境工程, 2019, 37(8):185-189.
|
[6] |
WHITE B C, WONG R, COLLINS W E, et al. Draft removal action closeout report time-critical removal action installation restoration Site 5 - Unit 2 Naval Air Station North Island San Diego, California[R]. San Diego: Shaw Environmental & Infrastructure,Inc, 2003.
|
[7] |
WEST O R, CLINE S R, HOLDEN W L, et al. A full-scale demonstration of in-situ chemical oxidation through recirculation at the X-701B site[R]. Oak Ridge: Office of Scientific and Technical Information(OSTI), 1997.
|
[8] |
GAVASKAR A, CONDIT W, HARRE K. Cost and performance report for a persulfate treatability study at naval air station north island[R]. Columbus: Defense Technical Information Center, 2008.
|
[9] |
PETRI B G, WATTS R J, TEEL A L, et al. Fundamentals of ISCO using hydrogen peroxide[M]//SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 33-88.
|
[10] |
SIMPKIN T J, PALAIA T, PETRI B G, et al. Oxidant delivery approaches and contingency planning[M]//SIEGRIST R L, CRIMI M, SIMPKIN T J. In-situ chemical oxidation for groundwater remediation. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7826-4-11.
DOI
|
[11] |
KREMBS F J, CLAYTON W S, MARLEY M C. Evaluation of ISCO Field applications and performance[M]//SIEGRIST R L, CRIMI M, SIMPKIN T J. In-situ chemical oxidation for groundwater remediation. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7826-4-8.
DOI
|
[12] |
TSITONAKI A, PETRI B, CRIMI M, et al. In-situ chemical oxidation of contaminated soil and groundwater using persulfate: a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91.
DOI
URL
|
[13] |
TONG M, YUAN S, MA S, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1):214-221.
DOI
URL
|
[14] |
YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(Ⅱ) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223:422-436.
DOI
URL
|
[15] |
YUAN S H, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2021, 64(2):251-260.
DOI
URL
|
[16] |
JONES A M, GRIFFIN P J, WAITE T D. Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid[J]. Geochimica et Cosmochimica Acta, 2015, 160:117-131.
DOI
URL
|
[17] |
WANG N, JIA D Q, JIN Y Y, et al. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH[J]. Environmental Science and Pollution Research International, 2017, 24(21):17598-17605.
DOI
URL
|
[18] |
JIA D Q, SUN S P, WU Z X, et al. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: sand columns demonstration[J]. Journal of Hazardous Materials, 2018, 346:124-132.
DOI
URL
|
[19] |
ZHANG Y, ZHOU M H. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362:436-450.
DOI
URL
|
[20] |
WEATHERILL J J, ATASHGAHI S, SCHNEIDEWIND U, et al. Natural attenuation of chlorinated ethenes in hyporheic zones: a review of key biogeochemical processes and in-situ transformation potential[J]. Water Research, 2018, 128:362-382.
DOI
URL
|
[21] |
LAINE P, MATILAINEN R. Simultaneous determination of DTPA, EDTA, and NTA by UV-visible spectrometry and HPLC[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7):1601-1609.
DOI
URL
|
[22] |
YUAN S H, CHEN M J, MAO X H, et al. Effects of reduced sulfur compounds on Pd-catalytic hydrodechlorination of trichloroethylene in groundwater by cathodic H2 under electrochemically induced oxidizing conditions[J]. Environmental Science & Technology, 2013, 47(18):10502-10509.
|
[23] |
YUAN S H, CHEN M J, MAO X H, et al. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling[J]. Water Research, 2013, 47(1):269-278.
DOI
URL
|
[24] |
YUAN S H, XIE S W, ZHAO K Y, et al. Field tests of in-well electrolysis removal of arsenic from high phosphate and iron groundwater[J]. Science of the Total Environment, 2018, 644:1630-1640.
DOI
URL
|
[25] |
YOU X J, LIU S G, DAI C M, et al. Acceleration and centralization of a back-diffusion process: effects of EDTA-2Na on cadmium migration in high- and low-permeability systems[J]. Science of the Total Environment, 2020, 706.
|
[26] |
刘雅莉, 刘菲, 黄伟英. 菱铁矿催化过氧化氢-过硫酸钠修复地下水中TCE时对微生物的影响[J]. 地学前缘, 2014, 21(4):186-190.
|
[27] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886.
DOI
URL
|
[28] |
WANG H Y, WANG J, ZHANG W, et al. Comparison of performance in a bioelectrochemical system for simultaneous denitrification and vanadate (V) removal using hydrogen as the sole electron donor[J]. Geomicrobiology Journal, 2020, 37(4):301-307.
DOI
URL
|
[29] |
CARERE C R, MCDONALD B, PEACH H A, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph[J]. Frontiers in Microbiology, 2019, 10:1873.
DOI
URL
|
[30] |
YOU X J, LIU S G, DAI C M, et al. Acceleration and centralization of a back-diffusion process: effects of EDTA-2Na on cadmium migration in high- and low-permeability systems[J]. Science of the Total Environment, 2020, 706:135708.
|
[31] |
刘洋, 袁松虎, 张耀强, 等. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯[J]. 水文地质工程地质, 2020, 47(3):44-51.
|
[32] |
李玮, 王明玉, 韩占涛, 等. 棕地地下水污染修复技术筛选方法研究: 以某废弃化工厂污染场地为例[J]. 水文地质工程地质, 2016, 43(3):131-140.
|
[33] |
苗竹, 吕正勇, 魏丽, 等. 地下水循环井技术概述[C]//2018中国环境科学学会科学技术年会论文集. 北京: 中国环境科学学会, 2018: 714-719.
|