Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 208-214.DOI: 10.13745/j.esf.sf.2021.2.17
Previous Articles Next Articles
ZHANG Yaoqiang1(), HU Bingbing1, XIE Shiwei2, YUAN Songhu1,*()
Received:
2020-05-12
Revised:
2020-09-18
Online:
2021-09-25
Published:
2021-10-29
Contact:
YUAN Songhu
CLC Number:
ZHANG Yaoqiang, HU Bingbing, XIE Shiwei, YUAN Songhu. Content and speciation distributions of Fe and As in disposed quartz sand from groundwater treatment by sequential aeration and sand filtration[J]. Earth Science Frontiers, 2021, 28(5): 208-214.
步骤 | 提取条件 | 目标形态 | 测试结果 | 参考文献 | |
---|---|---|---|---|---|
Fe含量/(mg·g-1) | As含量/(μg·g-1) | ||||
(1)氯化钙 | 1 mol·L-1 CaCl2, pH=7,24 h | 离子交换态Fe和As | <0.0 | 0.5±0.0 | Heron等[ |
(2)醋酸钠 | 1 mol·L-1 醋酸钠, pH=4.5,24 h | 碳酸盐结合态Fe及易溶解态的铁(氢)氧化物,表面吸附态As及该形态对应的As | 11.7±0.2 | 22.6±0.3 | Poulton等[ Javed等[ Neumann等[ |
(3)盐酸羟胺 | 1 mol·L-1 HONH2HCl, 48 h | 易还原态Fe,包括水铁矿、纤铁矿等,与该铁形态共存的As | 8.4±2.0 | 32.2±0.4 | Poulton等[ |
Table 1 Step-by-step chemical extraction procedure for the disposed quartz sand
步骤 | 提取条件 | 目标形态 | 测试结果 | 参考文献 | |
---|---|---|---|---|---|
Fe含量/(mg·g-1) | As含量/(μg·g-1) | ||||
(1)氯化钙 | 1 mol·L-1 CaCl2, pH=7,24 h | 离子交换态Fe和As | <0.0 | 0.5±0.0 | Heron等[ |
(2)醋酸钠 | 1 mol·L-1 醋酸钠, pH=4.5,24 h | 碳酸盐结合态Fe及易溶解态的铁(氢)氧化物,表面吸附态As及该形态对应的As | 11.7±0.2 | 22.6±0.3 | Poulton等[ Javed等[ Neumann等[ |
(3)盐酸羟胺 | 1 mol·L-1 HONH2HCl, 48 h | 易还原态Fe,包括水铁矿、纤铁矿等,与该铁形态共存的As | 8.4±2.0 | 32.2±0.4 | Poulton等[ |
Fig.1 Iron and As content distributions measured by LA-ICP-MS linear scan along the transect of sand grain (a) and correlation between Fe and As contents (b)
[1] |
FENDORF S, MICHAEL H A, VAN GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982):1123-1127.
DOI URL |
[2] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568.
DOI URL |
[3] |
ANAWAR H M, AKAI J, MOSTOFA K M G, et al. Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh[J]. Environment International, 2002, 27(7):597-604.
DOI URL |
[4] | 段艳华, 甘义群, 郭欣欣, 等. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J]. 地质科技情报, 2014, 33(2):140-147. |
[5] | 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3):771-780. |
[6] |
HUG S J, LEUPIN O X, BERG M. Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation[J]. Environmental Science & Technology, 2008, 42(17):6318-6323.
DOI URL |
[7] |
BERG M, LUZI S, TRANG P T K, et al. Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits[J]. Environmental Science & Technology, 2006, 40(17):5567-5573.
DOI URL |
[8] |
VOEGELIN A, KAEGI R, BERG M, et al. Solid-phase characterisation of an effective household sand filter for As, Fe and Mn removal from groundwater in Vietnam[J]. Environmental Chemistry, 2014, 11(5):566.
DOI URL |
[9] |
JESSEN S, LARSEN F, KOCH C B, et al. Sorption and desorption of arsenic to ferrihydrite in a sand filter[J]. Environmental Science & Technology, 2005, 39(20):8045-8051.
DOI URL |
[10] |
WATANABE C, KAWATA A, SUDO N, et al. Water intake in an Asian population living in arsenic-contaminated area[J]. Toxicology and Applied Pharmacology, 2004, 198(3):272-282.
DOI URL |
[11] |
CLANCY T M, HAYES K F, RASKIN L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water[J]. Environmental Science & Technology, 2013, 47(19):10799-10812.
DOI URL |
[12] |
SULLIVAN C, TYRER M, CHEESEMAN C R, et al. Disposal of water treatment wastes containing arsenic: a review[J]. Science of the Total Environment, 2010, 408(8):1770-1778.
DOI URL |
[13] |
VOEGELIN A, SENN A C, KAEGI R, et al. Reductive dissolution of As(V)-bearing Fe(III)-precipitates formed by Fe(II) oxidation in aqueous solutions[J]. Geochemical Transactions, 2019, 20(1):1-13.
DOI URL |
[14] |
SENN A C, HUG S J, KAEGI R, et al. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging[J]. Water Research, 2018, 131:334-345.
DOI URL |
[15] |
WEBER F A, HOFACKER A F, VOEGELIN A, et al. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil[J]. Environmental Science & Technology, 2010, 44(1):116-122.
DOI URL |
[16] | 田飞翔, 郑天亮, 李琦, 等. 江汉平原第四系沉积物中砷的垂向分布规律及其对地下水中砷浓度的影响[J]. 地质科技情报, 2018, 37(3):226-234. |
[17] |
PEARCE N J G, PERKINS W T, WESTGATE J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards Newsletter, 1997, 21(1):115-144.
DOI URL |
[18] |
HERON G, CROUZET C, pBOURG A C M, et al. Seciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques[J]. Environmental Science & Technology, 1994, 28(9):1698-1705.
DOI URL |
[19] |
POULTON S W, CANFIELD D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3/4):209-221.
DOI URL |
[20] |
JAVED M B, KACHANOSKI G, SIDDIQUE T. A modified sequential extraction method for arsenic fractionation in sediments[J]. Analytica Chimica Acta, 2013, 787:102-110.
DOI URL |
[21] |
NEUMANN A, KAEGI R, VOEGELIN A, et al. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study[J]. Environmental Science & Technology, 2013, 47(9):4544-4554.
DOI URL |
[22] |
DAS S, HENDRY M J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes[J]. Chemical Geology, 2011, 290(3/4):101-108.
DOI URL |
[23] |
PAIGE C R, SNODGRASS W J, NICHOLSON R V, et al. An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions[J]. Water Research, 1997, 31(9):2370-2382.
DOI URL |
[24] |
DAS S, ESSILFIE-DUGHAN J, HENDRY M J. Arsenate partitioning from ferrihydrite to hematite: spectroscopic evidence[J]. American Mineralogist, 2014, 99(4):749-754.
DOI URL |
[25] |
FORD R G. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate[J]. Environmental Science & Technology, 2002, 36(11):2459-2463.
DOI URL |
[1] | ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study [J]. Earth Science Frontiers, 2022, 29(5): 497-507. |
[2] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[3] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[4] | XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems [J]. Earth Science Frontiers, 2022, 29(3): 189-199. |
[5] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[6] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[7] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[8] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[9] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[10] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[11] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[12] | XIE Fei, ZHANG Yuxi, LIU Jingtao, ZHOU Bing, XIANG Xiaoping. Groundwater quality and pollution assessment based on ‘hierarchical ladder evaluation method’: A case study of Tongchuan Cit [J]. Earth Science Frontiers, 2021, 28(5): 15-25. |
[13] | ZHU Hui, YE Shujun, WU Jichun, XU Haizhen. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021, 28(5): 26-34. |
[14] | PENG Ziqi, MA Teng, LIU Yanjun, CHEN Juan, QIU Wenkai, LIU Rui. Effect of pressure on C-N-S-Fe-H2O system in sil [J]. Earth Science Frontiers, 2021, 28(5): 79-89. |
[15] | SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 90-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||