Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 88-98.DOI: 10.13745/j.esf.sf.2022.1.26
Previous Articles Next Articles
LÜ Xiaoli1(), ZHENG Yuejun1, HAN Zhantao2,*(), LI Haijun3, YANG Mingnan4, ZHANG Ruolin1, LIU Dandan5,*()
Received:
2021-10-30
Revised:
2022-01-24
Online:
2022-05-25
Published:
2022-04-28
Contact:
HAN Zhantao,LIU Dandan
CLC Number:
LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization[J]. Earth Science Frontiers, 2022, 29(3): 88-98.
类别 | 样品组数 | 最小值/ (mg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中位值/ (μg·L-1) | 变异系数/ % | 检出率/ % | 高砷地下 水率/% | |
---|---|---|---|---|---|---|---|---|---|
含水层类型 | 孔隙水 | 1 054 | ND | 420 | 5.32 | 0.9 | 414 | 80.5 | 7.8 |
裂隙水 | 482 | ND | 56 | 0.87 | 0.2 | 356 | 61.2 | 0.8 | |
岩溶水 | 31 | ND | 25 | 2.73 | 0.5 | 211 | 83.9 | 9.7 | |
城镇化水平 | 2008年建设用地 | 383 | ND | 420 | 5.63 | 1.7 | 481 | 85.1 | 7.3 |
2009—2018年 新增建设用地 | 691 | ND | 210 | 5.08 | 0.6 | 361 | 77.1 | 8.1 | |
非城镇建设用地 | 493 | ND | 22 | 0.894 | 0.2 | 248 | 63.1 | 1.0 | |
珠三角地区合计 | 1 567 | ND | 420 | 3.90 | 0.5 | 469 | 74.7 | 5.7 |
Table 1 Arsenic statistics for groundwater in various aquifers and in areas with different urbanization levels
类别 | 样品组数 | 最小值/ (mg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中位值/ (μg·L-1) | 变异系数/ % | 检出率/ % | 高砷地下 水率/% | |
---|---|---|---|---|---|---|---|---|---|
含水层类型 | 孔隙水 | 1 054 | ND | 420 | 5.32 | 0.9 | 414 | 80.5 | 7.8 |
裂隙水 | 482 | ND | 56 | 0.87 | 0.2 | 356 | 61.2 | 0.8 | |
岩溶水 | 31 | ND | 25 | 2.73 | 0.5 | 211 | 83.9 | 9.7 | |
城镇化水平 | 2008年建设用地 | 383 | ND | 420 | 5.63 | 1.7 | 481 | 85.1 | 7.3 |
2009—2018年 新增建设用地 | 691 | ND | 210 | 5.08 | 0.6 | 361 | 77.1 | 8.1 | |
非城镇建设用地 | 493 | ND | 22 | 0.894 | 0.2 | 248 | 63.1 | 1.0 | |
珠三角地区合计 | 1 567 | ND | 420 | 3.90 | 0.5 | 469 | 74.7 | 5.7 |
[1] |
HUANG G X, CHEN Z Y, LIU F, et al. Impact of human activity and natural processes on groundwater arsenic in an urbanized area (South China) using multivariate statistical techniques[J]. Environmental Science and Pollution Research International, 2014, 21(22): 13043-13054.
DOI URL |
[2] | KAPAJ S, PETERSON H, LIBER K, et al. Human health effects from chronic arsenic poisoning: a review[J]. Journal of Environmental Science and Health, 2006, 41(10): 2399-2428. |
[3] |
GUO H M, ZHOU Y Z, JIA Y F, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: evidence from multiple isotope approaches[J]. Environmental Science and Technology, 2016, 50(23): 12650-12659.
DOI URL |
[4] | WHO (World Health Organization). Guidelines for drinking-water quality[S]. 4th ed. Geneva: World Health Organization, 2011. |
[5] | 王振. 青海贵德盆地高砷地下水分布和成因探究[D]. 北京: 中国地质大学(北京), 2019. |
[6] | 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. |
[7] |
WANG Y, JIAO J J, CHERRY J A. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China[J]. The Science of the Total Environment, 2012, 427/428: 286-297.
DOI URL |
[8] |
GUO Q H, CAO Y W, LI J X, et al. Natural attenuation of geothermal arsenic from Yangbajain power plant discharge in the Zangbo River, Tibet, China[J]. Applied Geochemistry, 2015, 62: 164-170.
DOI URL |
[9] |
MENG X G, BANG S, KORFIATIS G P. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Research, 2000, 34(4): 1255-1261.
DOI URL |
[10] | 邬建勋. 沉积物对砷吸附解吸机制下江汉平原地下水系统中砷迁移转化规律研究[D]. 武汉: 中南民族大学, 2019. |
[11] |
GUO Q, GUO H M, YANG Y C, et al. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P R China[J]. Journal of Hydrology, 2014, 518: 464-476.
DOI URL |
[12] |
HUANG G X, SUN J C, ZHANG Y, et al. Distribution ofarsenic in aewage irrigation area of Pearl River Delta, China[J]. Journal of Earth Science, 2011, 22(3): 396-410.
DOI URL |
[13] |
FENDORF S, MICHAEL H A, VAN GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127.
DOI URL |
[14] |
XIE X J, WANG Y X, SU C L, et al. Arsenic mobilization in shallow aquifers of Datong Basin: hydrochemical and mineralogical evidences[J]. Journal of Geochemical Exploration, 2008, 98(3): 107-115.
DOI URL |
[15] | 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化三角洲地区高碘地下水赋存特征及驱动因素: 以珠江三角洲为例[J]. 环境科学, 2022, 43(1): 339-348. |
[16] | 高芳蕾, 杨小强, 董艺辛, 等. 珠江三角洲PD孔沉积物的碳氮记录及其环境意义[J]. 海洋地质与第四纪地质, 2006, 26(2): 33-39. |
[17] | 广东省统计局. 2019广东统计年鉴(汉英对照附光盘)[M]. 北京: 中国统计出版社, 2019. |
[18] |
HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of the Total Environment, 2013, 463/464: 209-221.
DOI URL |
[19] | 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化进程中珠江三角洲硝酸型地下水赋存特征及驱动因素[J]. 环境科学, 2021, 42(10): 4761-4771. |
[20] | 国家卫生和计划生育委员会, 国家食品药品监督管理总局.GB 8538-2016 食品安全国家标准饮用天然矿泉水检验方法[S]. 北京: 中国标准出版社, 2017. |
[21] | 中华人民共和国自然资源部.DZ/T 0064.2-2021 地下水质分析方法第2部分: 水样的采集和保存[S]. 北京: 中国标准出版社, 2021. |
[22] | ZHANG F G, HUANG G X, HOU Q X, et al. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: distributions, main impact indicators, and driving forces[J]. Journal of Hydrology, 2019, 577: 124004. |
[23] | 郭华明, 王焰新, 李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003, 24(4): 60-67. |
[24] |
MARINER P E, HOLZMER F J, JACKSON R E, et al. Effects of high pH on arsenic mobility in a shallow sandy aquifer and on aquifer permeability along the adjacent shoreline, commencement bay superfund site, Tacoma, Washington[J]. Environmental Science and Technology, 1996, 30(5): 1645-1651.
DOI URL |
[25] |
GUO H M, LI Y, ZHAO K, et al. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1847-1854.
DOI URL |
[26] | 张昌延, 何江涛, 张小文, 等. 珠江三角洲高砷地下水赋存环境特征及成因分析[J]. 环境科学, 2018, 39(8): 3631-3639. |
[27] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 14848-2017 地下水质量标准[S]. 北京: 中国标准出版社, 2017. |
[28] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI URL |
[29] | 吕晓立, 刘景涛, 周冰, 等. 新疆塔城盆地地下水中铁锰分布特征及人类活动的影响[J]. 中国地质, 2020, 47(6): 1765-1775. |
[30] | 左禹政, 安艳玲, 吴起鑫, 等. 贵州省都柳江流域水化学特征研究[J]. 中国环境科学, 2017, 37(7): 2684-2690. |
[31] | 支兵发. 珠江三角洲平原高铵地下水的形成演化[J]. 安全与环境工程, 2015, 22(4): 1-9. |
[32] |
XIAO J, JIN Z D, ZHANG F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2012, 67(5): 1331-1344.
DOI URL |
[33] |
JIAO J J, WANG Y, CHERRY J A, et al. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China[J]. Environmental Science and Technology, 2010, 44(19): 7470-7475.
DOI URL |
[34] | 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化进程中珠江三角洲高铵地下水赋存环境及驱动因素[J]. 中国地质, 2021, 48(6): 1770-1780. |
[1] | YIN Zhiqiang, WEI Gang, QIN Xiaoguang, LI Wenjuan, ZHAO Wuji. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 46-57. |
[2] | SONG Yingxin, LI Shengrong, SHEN Junfeng, ZHANG Long, LI Wentao, ZENG Yongjie. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(2): 305-319. |
[3] | ZHAO Lunshan, CEN Kuang, LIU Xiuli, WU Xuefang, ZHU Xuetao, WEI Junxiao, CHEN Yuan, LUN Zhiying. N-nitrosamine containing underground waters and regional cancer incidence in the Pearl River Delta region [J]. Earth Science Frontiers, 2019, 26(2): 335-349. |
[4] | WU Chu,WU Xiong,ZHANG Yanshuai,DONG Yanyan,ZHU Pengcheng. Distribution characteristics and genesis of highfluoride groundwater in the Niuxin Mountain, Qinhuangdao. [J]. Earth Science Frontiers, 2018, 25(4): 307-315. |
[5] | MAO Re-Yu, GUO Hua-Meng-*, GU Yong-Feng, JIANG Yu-Xiao, CAO Yong-Sheng, DIAO Wei-Guang, WANG Zhen. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin,Inner Mongolia. [J]. Earth Science Frontiers, 2016, 23(2): 260-268. |
[6] | ZHANG Guo-Hua, ZHANG Jian-Pei. A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin [J]. Earth Science Frontiers, 2015, 22(1): 260-270. |
[7] | . A preliminary study of the focal mechanism of the deepfocus earthquakes in Northeast China. [J]. Earth Science Frontiers, 2012, 19(5): 300-311. |
[8] | LI Yong, ZHOU Yong-Zhang, DOU Lei, DU Hai-Yan, LAI Qi-Hong, LIN Xiao-Meng, FAN Rui, DU Min. Soil heavy metal sources identification and associated risk assessment using multivariate statistical and Fourier spectral analysis. [J]. Earth Science Frontiers, 2010, 17(4): 253-261. |
[9] | XIANG Fang SONG Jian-Chun LUO Lai TIAN Xin. Distribution characteristics and climate significance of continental special deposits in the Early Cretaceous. [J]. Earth Science Frontiers, 2009, 16(5): 48-. |
[10] | LIU Chen CHEN Jia-Wei YANG Zhong-Fang. Geochemical characteristics of DDT and HCH in agricultural soil in the suburb of Beijing. [J]. Earth Science Frontiers, 2008, 15(5): 82-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||