Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 371-380.DOI: 10.13745/j.esf.sf.2023.2.40
Previous Articles Next Articles
FU Yu1(), CAO Wengeng2,*(
), ZHANG Chunju3, ZHAI Wenhua1, REN Yu2, NAN Tian2, LI Zeyan2
Received:
2022-10-28
Revised:
2022-12-27
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization[J]. Earth Science Frontiers, 2024, 31(3): 371-380.
类别 | 变量 | 描述 |
---|---|---|
气候 | 气温 | 年均温度(℃) |
降水 | 年降雨量(mm) | |
蒸散(ET) | 平均真实蒸散量(mm) | |
人类活动 | 排灌渠影响 | 单位为m |
水位埋深 | ||
水力梯度 | ||
沉积环境 | Q3-4地层厚度 | 全新世(Q4)和晚更新世(Q3) 地层的厚度 单位为m |
地面标高(DEM) | ||
黏土层 | ||
黏沙比 | ||
水文地质条件 | 富水性 | 单位为L/s |
土壤理化特征 | 浅层和深层土壤 理化特征 | 包括土砂分数、土淤泥分数、土黏土分数、土壤有机碳含量、土壤pH值 |
其他 | 坡度 | 单位为(°) |
土地利用 | 耕地、建筑物、林地、草地、水系 | |
植被指数(NDVI) | 归一化植被指数 |
Table 1 Model prediction variables
类别 | 变量 | 描述 |
---|---|---|
气候 | 气温 | 年均温度(℃) |
降水 | 年降雨量(mm) | |
蒸散(ET) | 平均真实蒸散量(mm) | |
人类活动 | 排灌渠影响 | 单位为m |
水位埋深 | ||
水力梯度 | ||
沉积环境 | Q3-4地层厚度 | 全新世(Q4)和晚更新世(Q3) 地层的厚度 单位为m |
地面标高(DEM) | ||
黏土层 | ||
黏沙比 | ||
水文地质条件 | 富水性 | 单位为L/s |
土壤理化特征 | 浅层和深层土壤 理化特征 | 包括土砂分数、土淤泥分数、土黏土分数、土壤有机碳含量、土壤pH值 |
其他 | 坡度 | 单位为(°) |
土地利用 | 耕地、建筑物、林地、草地、水系 | |
植被指数(NDVI) | 归一化植被指数 |
样品数 | 最小值/ (μg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中值/ (μg·L-1) | 标准差/ (μg·L-1) | 变异系数 |
---|---|---|---|---|---|---|
605 | <0.05 | 916.70 | 54.74 | 9.43 | 108.66 | 1.98 |
Table 2 Descriptive statistical characteristics of arsenic content in groundwater
样品数 | 最小值/ (μg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中值/ (μg·L-1) | 标准差/ (μg·L-1) | 变异系数 |
---|---|---|---|---|---|---|
605 | <0.05 | 916.70 | 54.74 | 9.43 | 108.66 | 1.98 |
模型性能指标 | 模型各指标的性能度量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | ET | TreeBag | XGBoost | AdaBoost | GBDT | SVM | LDA | LR | KNN | MLP | ||
AUC | 0.770 | 0.759 | 0.752 | 0.694 | 0.691 | 0.685 | 0.720 | 0.647 | 0.632 | 0.603 | 0.570 | |
Accuracy | 0.698 | 0.680 | 0.687 | 0.632 | 0.632 | 0.629 | 0.577 | 0.604 | 0.599 | 0.582 | 0.549 | |
Precision | 0.678 | 0.657 | 0.727 | 0.591 | 0.670 | 0.608 | 0.537 | 0.604 | 0.578 | 0.591 | 0.597 | |
Recall | 0.701 | 0.703 | 0.609 | 0.747 | 0.622 | 0.654 | 0.828 | 0.630 | 0.598 | 0.591 | 0.421 | |
F1 | 0.690 | 0.685 | 0.663 | 0.660 | 0.646 | 0.656 | 0.650 | 0.617 | 0.588 | 0.591 | 0.494 | |
kappa | 0.401 | 0.440 | 0.375 | 0.270 | 0.264 | 0.289 | 0.162 | 0.208 | 0.197 | 0.164 | 0.109 |
Table 3 Performance metrics for candidate base learners
模型性能指标 | 模型各指标的性能度量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | ET | TreeBag | XGBoost | AdaBoost | GBDT | SVM | LDA | LR | KNN | MLP | ||
AUC | 0.770 | 0.759 | 0.752 | 0.694 | 0.691 | 0.685 | 0.720 | 0.647 | 0.632 | 0.603 | 0.570 | |
Accuracy | 0.698 | 0.680 | 0.687 | 0.632 | 0.632 | 0.629 | 0.577 | 0.604 | 0.599 | 0.582 | 0.549 | |
Precision | 0.678 | 0.657 | 0.727 | 0.591 | 0.670 | 0.608 | 0.537 | 0.604 | 0.578 | 0.591 | 0.597 | |
Recall | 0.701 | 0.703 | 0.609 | 0.747 | 0.622 | 0.654 | 0.828 | 0.630 | 0.598 | 0.591 | 0.421 | |
F1 | 0.690 | 0.685 | 0.663 | 0.660 | 0.646 | 0.656 | 0.650 | 0.617 | 0.588 | 0.591 | 0.494 | |
kappa | 0.401 | 0.440 | 0.375 | 0.270 | 0.264 | 0.289 | 0.162 | 0.208 | 0.197 | 0.164 | 0.109 |
模型 | 综合评价得分 | 排名 |
---|---|---|
RF | 0.640 | 1 |
ET | 0.639 | 2 |
TreeBag | 0.624 | 3 |
XGBoost | 0.571 | 4 |
AdaBoost | 0.568 | 5 |
GBDT | 0.565 | 6 |
SVM | 0.539 | 7 |
LDA | 0.528 | 8 |
LR | 0.510 | 9 |
KNN | 0.497 | 10 |
MLP | 0.443 | 11 |
Table 4 Entropy weighted composite score ranking of candidate base learners
模型 | 综合评价得分 | 排名 |
---|---|---|
RF | 0.640 | 1 |
ET | 0.639 | 2 |
TreeBag | 0.624 | 3 |
XGBoost | 0.571 | 4 |
AdaBoost | 0.568 | 5 |
GBDT | 0.565 | 6 |
SVM | 0.539 | 7 |
LDA | 0.528 | 8 |
LR | 0.510 | 9 |
KNN | 0.497 | 10 |
MLP | 0.443 | 11 |
模型 | AUC | Accuracy | Precision | Recall | Specificity |
---|---|---|---|---|---|
Stacking | 0.781 | 0.720 | 0.678 | 0.793 | 0.697 |
RF | 0.770 | 0.698 | 0.678 | 0.701 | 0.695 |
Table 5 Comparison of Stacking and RF performance measures
模型 | AUC | Accuracy | Precision | Recall | Specificity |
---|---|---|---|---|---|
Stacking | 0.781 | 0.720 | 0.678 | 0.793 | 0.697 |
RF | 0.770 | 0.698 | 0.678 | 0.701 | 0.695 |
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI PMID |
[2] | WORLD HEALTH ORGANIZATION. Guidelines for Drinking-water Quality[S]. 4th ed. Geneva: World Health Organization, 2011. |
[3] |
OREMLAND R S, STOLZ J F. The ecology of arsenic[J]. Science, 2003, 300(5621): 939-944.
DOI PMID |
[4] | JIA Y F, GUO H M, JIANG Y X, et al. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia[J]. Journal of Hydrology, 2014, 518(Part C): 410-420. |
[5] | SMEDLEY P L, KINNIBURGH D. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. |
[6] | 曹文庚, 董秋瑶, 谭俊, 等. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2021, 19(1): 140-150. |
[7] | 金银龙, 梁超轲, 何公理, 等. 中国地方性砷中毒分布调查(总报告)[J]. 卫生研究, 2003, 32(6): 519-540. |
[8] | SMEDLEY P L, ZHANG M, ZHANG G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Applied Geochemistry, 2003, 18(9): 1453-1477. |
[9] | 郭华明, 唐小惠, 杨素珍, 等. 土著微生物作用下含水层沉积物砷的释放与转化[J]. 现代地质, 2009, 23(1): 86-93. |
[10] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[11] | CAO W G, GUO H M, ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. The Science of the Total Environment, 2018, 613/614: 958-968. |
[12] | GUO H M, LI X M, XIU W, et al. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P. R. China[J]. Journal of Hydrology, 2019, 571: 448-459. |
[13] | 张庆卜. 国家级地下水位监测数据分析研究: 以民勤盆地为例[D]. 北京: 中国地质大学(北京), 2020. |
[14] | CHOWDHURY M, ALOUANI A, HOSSAIN F. Comparison of ordinary Kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(1): 1-7. |
[15] | LIN Y P, CHENG B Y, CHU H J, et al. Assessing how heavy metal pollution and human activity are related by using logistic regression and Kriging methods[J]. Geoderma, 2011, 163(3/4): 275-282. |
[16] | AHN J S, CHO Y C. Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application[J]. Environmental Earth Sciences, 2013, 68(7): 2123-2132. |
[17] | WINKEL L, BERG M, AMINI M, et al. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters[J]. Nature Geoscience, 2008, 1(8): 536-542. |
[18] | TAN Z, YANG Q, ZHENG Y. Machine learning models of groundwater arsenic spatial distribution in Bangladesh: influence of Holocene sediment depositional history[J]. Environmental Science & Technology, 2020, 54(15): 9454-9463. |
[19] | TWARAKAVI N K C, MISRA D, BANDOPADHYAY S. Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data[J]. Natural Resources Research, 2006, 15(1): 15-26. |
[20] |
CHO K H, STHIANNOPKAO S, PACHEPSKY Y A, et al. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network[J]. Water Research, 2011, 45(17): 5535-5544.
DOI PMID |
[21] | LOMBARD M A, BRYAN M S, JONES D K, et al. Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies[J]. Environmental Science & Technology, 2021, 55(8): 5012-5023. |
[22] | FU Y, CAO W G, PAN D, et al. Changes of groundwater arsenic risk in different seasons in Hetao Basin based on machine learning model[J]. The Science of the Total Environment, 2022, 817: 153058. |
[23] | CAO H L, XIE X J, WANG Y X, et al. The interactive natural drivers of global geogenic arsenic contamination of groundwater[J]. Journal of Hydrology, 2021, 597: 126214. |
[24] | BUI D T, KHOSRAVI K, TIEFENBACHER J, et al. Improving prediction of water quality indices using novel hybrid machine-learning algorithms[J]. The Science of the Total Environment, 2020, 721: 137612. |
[25] | MALLICK J, TALUKDAR S, ALSUBIH M, et al. Integration of statistical models and ensemble machine learning algorithms (MLAs) for developing the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia[J]. Geocarto International, 2022, 37(22): 6442-6473. |
[26] | CHEN Y, CHEN W, CHANDRA PAL S, et al. Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential[J]. Geocarto International, 2022, 37(19): 5564-5584. |
[27] | WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. |
[28] | CHATZIMPARMPAS A, MARTINS R M, KUCHER K, et al. StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1547-1557. |
[29] | LEDEZMA A, ALER R, SANCHIS A, et al. GA-stacking: evolutionary stacked generalization[J]. Intelligent Data Analysis, 2010, 14(1): 89-119. |
[30] | SUN W, TREVOR B A. stacking ensemble learning framework for annual river ice breakup dates[J]. Journal of Hydrology, 2018, 561: 636-650. |
[31] | HU X D, ZHANG H, MEI H B, et al. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China[J]. Applied Sciences, 2020, 10(11): 4016. |
[32] | TAGHIZADEH R, SCHMIDT K, CHAKAN A A, et al. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space[J]. Remote Sensing, 2020, 12(7): 1095. |
[33] | GU J Y, LIU S G, ZHOU Z Z, et al. A stacking ensemble learning model for monthly rainfall prediction in the Taihu Basin, China[J]. Water, 2022, 14(3): 492. |
[34] | GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196. |
[35] | 高存荣. 河套平原地下水砷污染机理的探讨[J]. 中国地质灾害与防治学报, 1999(2): 25-32. |
[36] | RAPHAËL B, VINCENT C, ERIC R, et al. A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers[J]. Water, Air, & Soil Pollution, 2016, 227(9): 296. |
[37] | CHARLET L, POLYA D A. Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster[J]. Elements, 2006, 2(2): 91-96. |
[38] | PODGORSKI J E, EQANI S, KHANAM T, et al. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley[J]. Science Advances, 2017, 3(8): e1700935. |
[39] | NGUYEN P T, HA D H, NGUYEN H D, et al. Improvement of credal decision trees using ensemble frameworks for groundwater potential modeling[J]. Sustainability, 2020, 12(7): 2622. |
[40] | GHOBADI A, CHERAGHI M, SOBHANARDAKANI S, et al. Groundwater quality modeling using a novel hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network: a case study in Asadabad Plain, Hamedan, Iran[J]. Environmental Science and Pollution Research, 2022, 29(6): 8716-8730. |
[41] | OSMAN A I A, AHMED A N, HUANG Y F, et al. Past, present and perspective methodology for groundwater modeling-based machine learning approaches[J]. Archives of Computational Methods in Engineering, 2022, 29(6): 3843-3859. |
[42] | ALI E B, ABDESLAM T, YOUSSEF B. Groundwater quality forecasting using machine learning algorithms for irrigation purposes[J]. Agricultural Water Management, 2021, 245: 106625. |
[43] | SINGHA S, PASUPULETI S, SINGHA S S, et al. Prediction of groundwater quality using efficient machine learning technique[J]. Chemosphere, 2021, 276: 130265. |
[44] | NASIR N, KANSAL A, ALSHALTONE O, et al. Water quality classification using machine learning algorithms[J]. Journal of Water Process Engineering, 2022, 48: 102920. |
[45] | MOSAVI A, SAJEDI HOSSEINI F, CHOUBIN B, et al. Ensemble boosting and bagging based machine learning models for groundwater potential prediction[J]. Water Resources Management, 2021, 35(1): 23-37. |
[46] | NAGHIBI S A, AHMADI K, DANESHI A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping[J]. Water Resources Management, 2017, 31(9): 2761-2775. |
[47] | HAMMED M M, ALOMAR M K, KHALEEL F, et al. An extra tree regression model for discharge coefficient prediction: novel, practical applications in the hydraulic sector and future research directions[J]. Mathematical Problems in Engineering, 2021, 2021(1): 1-19. |
[48] | HUSEN S, KHAMITKAR S, BHALCHANDRA P, et al. Modeling groundwater spring potential of selected geographical area using machine learning algorithms[M]//Applied computer vision and image processing. Singapore: Springer, 2020: 424-432. |
[49] | HUANG X, GAO L, CROSBIE R S, et al. Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning[J]. Water, 2019, 11(9): 1879. |
[50] |
MAIR A, EL-KADI A I. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA[J]. Journal of Contaminant Hydrology, 2013, 153: 1-23.
DOI PMID |
[51] | WILSON S R, CLOSE M E, ABRAHAM P. Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification[J]. Journal of Hydrology, 2018, 556: 611-624. |
[52] | MALLIKARJUNA B, SATHISH K, VENKATA KRISHNA P, et al. The effective SVM-based binary prediction of ground water table[J]. Evolutionary Intelligence, 2021, 14(2): 779-787. |
[53] | ZHAO J C, JI G X, TIAN Y, et al. Environmental vulnerability assessment for mainland China based on entropy method[J]. Ecological Indicators, 2018, 91: 410-422. |
[54] | 周志华, 王珏. 机器学习及其应用[M]. 北京: 清华大学出版社, 2007: 63-72. |
[55] | GUO H M, TANG X H, YANG S Z, et al. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations[J]. Applied Geochemistry, 2008, 23(12): 3267-3277. |
[56] | VAN GEENA A, ZHENG Y, GOODBRED Jr S, et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin[J]. Environmental Science & Technology, 2008, 42(7): 2283-2288. |
[57] | 付宇, 曹文庚, 张娟娟. 基于随机森林建模预测河套盆地高砷地下水风险分布[J]. 岩矿测试, 2021, 40(6): 860-870. |
[58] |
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
DOI |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[3] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[4] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[5] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[6] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[7] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[8] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[9] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[10] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[11] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[12] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[13] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[14] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[15] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||