Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 11-24.DOI: 10.13745/j.esf.sf.2022.1.49
Previous Articles Next Articles
WEN Dongguang(), SONG Jian(), DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie
Received:
2022-01-08
Revised:
2022-01-28
Online:
2022-05-25
Published:
2022-04-28
Contact:
SONG Jian
CLC Number:
WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research[J]. Earth Science Frontiers, 2022, 29(3): 11-24.
[1] | 沈照理, 王焰新. 水-岩相互作用研究的回顾与展望[J]. 地球科学: 中国地质大学学报, 2002, 27(2): 127-133. |
[2] | 沈照理, 许绍倬. 关于地下水地质作用[J]. 地球科学: 武汉地质学院学报, 1985, 10(1): 99-106. |
[3] | 沈照理, 王焰新, 郭华明. 水-岩相互作用研究的机遇与挑战[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 207-219. |
[4] | 沈照理, 刘光亚, 杨成田, 等. 水文地质学[M]. 北京: 科学出版社, 1991. |
[5] | 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993. |
[6] | 文冬光, 沈照理, 钟佐燊. 水-岩相互作用的地球化学模拟理论及应用[M]. 武汉: 中国地质大学出版社, 1998. |
[7] | 加弗里连科. 构造圈水文地质学[M]. 孙杉, 译. 北京: 地质出版社, 1981. |
[8] | SHEN Z L, WANG Y P, WEN D G, et al. An introduction to geochemistry of the oilfield waters in China[M]. Beijing: Science Press, 1999. |
[9] | 王焰新, 文冬光, 沈照理, 等. 深部地下水的起源及其成矿作用[J]. 地学前缘, 1996, 3(4): 115-122. |
[10] | 巴斯科夫. 成矿规律研究中的古水文地质分析[M]. 沈照理, 译. 北京: 科学出版社, 1981. |
[11] | FYFE W S, PRICE N I, THOMPSON A B. Fluids in the Earth’s crust[M]. New York: Elsevier, 1978. |
[12] | 李鹏, 罗玉钦, 田有, 等. 深部地质资源地球物理探测技术研究发展[J]. 地球物理学进展, 2021, 36(5): 2011-2033. |
[13] | 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417-426. |
[14] |
BELL D R, ROSSMAN G R. Water in Earth’s mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255(5050): 1391-1397.
DOI URL |
[15] |
MANNING C E. Fluids of the lower crust deep is different[J]. Annual Review of Earth and Planetary Sciences, 2018, 46: 67-97.
DOI URL |
[16] |
PEARSON D G, BRENKER F E, NESTOLA F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014, 507(7491): 221-224.
DOI URL |
[17] | 夏群科, 杨晓志, 郝艳涛, 等. 深部地球中水的分布和循环[J]. 地学前缘, 2007, 14(2): 10-23. |
[18] | 王方正, 胡宝群. 岩石圈深部的水及其意义探讨[J]. 地质科技情报, 2000, 19(4): 25-30. |
[19] |
WANG X C, WILDE S A, XU B, et al. Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos, 2016, 261: 5-45.
DOI URL |
[20] |
KAWAKATSU H, WATADA S. Seismic evidence for deep-water transportation in the mantle[J]. Science, 2007, 316(5830): 1468-1471.
DOI URL |
[21] | RANERO C R, VILLASEÑOR A, PHIPPS MORGAN J, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): 1-25. |
[22] | 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 46(3): 253-286. |
[23] | 李承泽, 王金荣. 地球深部水循环的动力学机制与相关问题研究进展[J]. 西北地质, 2018, 51(2): 209-219. |
[24] | 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190-198. |
[25] |
BRUN J P, COBBOLD P R. Strain heating and thermal softening in continental shear zones: a review[J]. Journal of Structural Geology, 1980, 2(1/2): 149-158.
DOI URL |
[26] |
REAVY R J. Structural controls on metamorphism and syn-tectonic magmatism: the Portuguese Hercynian collision belt[J]. Journal of the Geological Society, 1989, 146(4): 649-657.
DOI URL |
[27] |
LELOUP P H, KIENAST J R. High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River, People’s Republic of China[J]. Earth and Planetary Science Letters, 1993, 118(1/2/3/4): 213-234.
DOI URL |
[28] |
LELOUP P H, LACASSIN R, TAPPONNIER P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/2/3/4): 3-84.
DOI URL |
[29] | 张森琦, 吴海东, 张杨, 等. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报, 2020, 94(5): 1591-1605. |
[30] | 鲁锴, 鲍志东, 季汉成, 等. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测[J]. 古地理学报, 2019, 21(6): 885-900. |
[31] | DUBLYANSKY Y V. Hydrothermal speleogenesis: its settings and peculiar features[M]// KLIMCHOU K A B, FORD D C, PALMER A N, et al. Speleogenesis:evolution of karst aquifers. Huntsville: National Speleological Society, 2000: 298-303. |
[32] |
GOLDSCHEIDER N, MÁDL-SZÖNYI J, ERÖSS EVA A, et al. Review: thermal water resources in carbonate rock aquifers[J]. Hydrogeology Journal, 2010, 18(6):1303-1318.
DOI URL |
[33] | 李朋威, 何治亮, 罗平, 等. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素[J]. 石油与天然气地质, 2020, 41(1): 26-36, 49. |
[34] |
WANG S F, PANG Z H, LIU J R, et al. Origin and evolution characteristics of geothermal water in the Niutuozhen geothermal field, North China Plain[J]. Journal of Earth Science, 2013, 24(6): 891-902.
DOI URL |
[35] |
DAVISSON M L, CRISS R E. Na-Ca-Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 1996, 60(15): 2743-2752.
DOI URL |
[36] | 陈建生, 江巧宁. 地下水深循环研究进展[J]. 水资源保护, 2015, 31(6): 8-17, 66. |
[37] | 马致远, 王心刚, 苏艳, 等. 陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J]. 地质通报, 2008, 27(6): 888-894. |
[38] |
HAN D M, LIANG X, CURRELL M J, et al. Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China[J]. Hydrological Processes, 2010, 24(22): 3157-3176.
DOI URL |
[39] |
PEÑUELA-ARÉVALO L A, CARRILLO-RIVERA J J. Discharge areas as a useful tool for understanding recharge areas, study case: Mexico catchment[J]. Environmental Earth Sciences, 2013, 68(4): 999-1013.
DOI URL |
[40] | 王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉: 中国地质大学(武汉), 2016. |
[41] | 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5): 1606-1624. |
[42] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: Lewis Publishers, 1997. |
[43] | 陈宗宇, 齐继祥, 张兆吉, 等. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010. |
[44] | 钱会, 马致远, 李培月. 水文地球化学[M]. 2版. 北京: 地质出版社, 2012. |
[45] | 王晨光, 郑绵平, 张雪飞, 等. 青藏高原南部地热型锂资源[J]. 科技导报, 2020, 38(15): 24-36. |
[46] | 郑绵平, 刘文高. 西藏发现富锂镁硼酸盐矿床[J]. 地质论评, 1982, 28(3): 263-266. |
[47] | 郑绵平. 水热成矿新类型: 西藏铯硅华矿床[M]. 北京: 地质出版社, 1995. |
[48] | CAMPBELL M G. Battery lithium could come from geothermal waters[J]. New Scientist, 2009, 204(2738): 23. |
[49] |
TOMASZEWSKA B, SZCZEPA ŃSKI A. Possibilities for the efficient utilisation of spent geothermal waters[J]. Environmental Science and Pollution Research International, 2014, 21(19): 11409-11417.
DOI URL |
[50] | 李建森, 李廷伟, 马云麒, 等. 柴达木盆地卤水型Li、Rb关键金属矿产元素分布特征及富集机制[J]. 中国科学: 地球科学, 2022, 52(3): 474-485. |
[51] | DAVIS J R, FRIEDMAN I, GLEASON J D. Origin of the lithium-rich brine, Clayton Valley, Nevada[J]. U. S. Geological Survey Bulletin, 1986, 1622: 131-138. |
[52] |
ERICKSEN G E, VINE J D, BALLÓN A R. Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia[J]. Energy, 1978, 3(3): 355-363.
DOI URL |
[53] | 郑绵平, 刘文高, 向军, 等. 论西藏的盐湖[J]. 地质学报, 1983, 57(2): 184-194. |
[54] |
ZHANG L, CHAN L H, GIESKES J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J]. Geochimica et Cosmochimica Acta, 1998, 62(14): 2437-2450.
DOI URL |
[55] |
SCHMITT A K, HULEN J B. Buried rhyolites within the active, high-temperature Salton Sea geothermal system[J]. Journal of Volcanology and Geothermal Research, 2008, 178(4): 708-718.
DOI URL |
[56] |
BROTHERS D S, DRISCOLL N W, KENT G M, et al. Tectonic evolution of the Salton Sea inferred from seismic reflection data[J]. Nature Geoscience, 2009, 2(8): 581-584.
DOI URL |
[57] |
KARAKAS O, DUFEK J, MANGAN M T, et al. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field[J]. Earth and Planetary Science Letters, 2017, 467: 10-17.
DOI URL |
[58] |
WANG C G, ZHENG M P. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 2019, 81: 243-258.
DOI URL |
[59] |
WANG C G, ZHENG M P, ZHANG X F, et al. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 2020, 11(4): 1175-1187.
DOI URL |
[60] |
GUO Q H, WANG Y X, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3/4): 255-268.
DOI URL |
[61] | 李庆宽. 多指标约束下的那棱格勒河流域及其尾闾盐湖锂的物源与迁移富集规律研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2020. |
[62] | 王贵玲, 李郡, 吴爱民, 等. 河北容城凸起区热储层新层系: 高于庄组热储特征研究[J]. 地球学报, 2018, 39(5): 533-541. |
[63] | 徐浩然, 程镜如, 赵志宏. 华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J]. 地质学报, 2020, 94(7): 2157-2165. |
[64] | 朱红丽, 刘小满, 杨芳, 等. 开封市深层地热水回灌试验分析与研究[J]. 河南理工大学学报(自然科学版), 2011, 30(2): 215-219. |
[65] | 阮传侠. 天津地区雾迷山组热储地热回灌研究[D]. 北京: 中国地质大学(北京), 2018. |
[66] | 彭展翔. 天津市东丽湖地区雾迷山组地热回灌数值模拟及地热资源评价[D]. 北京: 中国地质大学(北京), 2016. |
[67] | 赵振, 秦光雄, 罗银飞, 等. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质, 2021, 48(5): 193-204. |
[68] | 郭建春, 肖勇, 蒋恕, 等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报, 2021, 95(5): 1582-1593. |
[69] |
ZHUANG L, KIM K Y, JUNG S G, et al. Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite[J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 575-589.
DOI URL |
[70] | 赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142. |
[71] |
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
DOI URL |
[72] | 张东晓, 杨婷云. 美国页岩气水力压裂开发对环境的影响[J]. 石油勘探与开发, 2015, 42(6): 801-807. |
[73] | KING G E. Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor, and engineer should know about hydraulic fracturing risk[J]. Journal of Petroleum Technology, 2012, 64(4): 34-42. |
[74] | FISHER K, WARPINSKI N. Hydraulic-fracture-height growth: real data[J]. SPE Production & Operations, 2012, 27(1): 8-19. |
[75] | OSBORN S G, VENGOSH A, WARNER N R, et al. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8172-8176. |
[76] |
ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33-48.
DOI URL |
[77] | 田枭. 页岩气水力压裂过程中压裂液-甲烷-矿物反应实验模拟研究[D]. 北京: 中国地质大学(北京), 2015. |
[78] | 高振兴. 四川某地页岩气开发中压裂液组分演化及其对地下水的影响[D]. 北京: 中国地质大学(北京), 2017. |
[79] |
WILKE F D H, VIETH-HILLEBRAND A, NAUMANN R, et al. Induced mobility of inorganic and organic solutes from black shales using water extraction: implications for shale gas exploitation[J]. Applied Geochemistry, 2015, 63:158-168.
DOI URL |
[80] |
MARCON V, JOSEPH C, CARTER K E, et al. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale[J]. Applied Geochemistry, 2017, 76: 36-50.
DOI URL |
[81] | 辜海林. 页岩气开采水力压裂过程中的水-页岩作用模拟研究[D]. 北京: 中国地质大学(北京), 2018. |
[82] | U. S. Environmental Protection Agency. Study of the potential impacts of hydraulic fracturing on drinking water resources[R]. Washington, D. C: U.S. Environmental Protection Agency, 2012. |
[83] |
MYERS T. Potential contaminant pathways from hydraulically fractured shale to aquifers[J]. Ground Water, 2012, 50(6): 872-882.
DOI URL |
[84] | METZ B, DAVIDSON O, DE CONINCK H, et al. IPCC special report on carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005. |
[85] | 张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 24(12): 1107-1110. |
[86] |
GUO J Q, WEN D G, ZHANG S Q, et al. Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China, and the demonstration project in Ordos Basin[J]. Acta Geologica Sinica (English Edition), 2015, 89(4): 1319-1332.
DOI URL |
[87] |
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
DOI URL |
[88] |
GOODMAN A, HAKALA A, BROMHAL G, et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
DOI URL |
[89] |
LEE H, SEO J, LEE Y, et al. Regional CO2solubility trapping potential of a deep saline aquifer in Pohang Basin, Korea[J]. Geosciences Journal, 2016, 20(4): 561-568.
DOI URL |
[90] |
SUN L L, DOU H E, LI Z P, et al. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China[J]. Journal of the Energy Institute, 2018, 91(6): 970-977.
DOI URL |
[91] |
RAZA A, REZAEE R, GHOLAMI R, et al. A screening criterion for selection of suitable CO2storage sites[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 317-327.
DOI URL |
[92] |
GUPTA P K, YADAV B. Leakage of CO2 from geological storage and its impacts on fresh soil-water systems: a review[J]. Environmental Science and Pollution Research International, 2020, 27(12): 12995-13018.
DOI URL |
[93] | PETIT A, CEREPI A, LOISY C, et al. Aquifer-CO2 leak project: Physicochemical characterization of the CO2 leakage impact on a carbonate shallow freshwater aquifer[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103231. |
[94] |
GANESH P R, BRYANT S L, MECKEL T A. Characterizing small-scale migration behavior of sequestered CO2 in a realistic geologic fabric[J]. Energy Procedia, 2013, 37: 5258-5266.
DOI URL |
[95] |
LI B X, BENSON S M. Influence of small-scale heterogeneity on upward CO2 plume migration in storage aquifers[J]. Advances in Water Resources, 2015, 83: 389-404.
DOI URL |
[96] |
LIU D Q, AGARWAL R, LI Y. Numerical simulation and optimization of CO2 enhanced shale gas recovery using a genetic algorithm[J]. Journal of Cleaner Production, 2017, 164: 1093-1104.
DOI URL |
[97] |
BACON D H, LOCKE R A, KEATING E, et al. Application of the Aquifer Impact Model to support decisions at a CO2 sequestration site[J]. Greenhouse Gases: Science and Technology, 2017, 7(6): 1020-1034.
DOI URL |
[98] |
RUTQVIST J, BIRKHOLZER J, CAPPA F, et al. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis[J]. Energy Conversion and Management, 2007, 48(6): 1798-1807.
DOI URL |
[99] |
LI Q, WEI Y N, LIU G Z, et al. CO2-EWR: a cleaner solution for coal chemical industry in China[J]. Journal of Cleaner Production, 2015, 103: 330-337.
DOI URL |
[100] |
CHADWICK A, WILLIAMS G, DELEPINE N, et al. Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation[J]. The Leading Edge, 2010, 29(2): 170-177.
DOI URL |
[101] | BOAIT F C, WHITE N J, BICKLE M J, et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea[J]. Journal of Geophysical Research Solid Earth, 2012, 117(B3): 1-21. |
[102] |
ZHU C, ZHANG G, LU P, et al. Benchmark modeling of the Sleipner CO2 plume: calibration to seismic data for the uppermost layer and model sensitivity analysis[J]. International Journal of Greenhouse Gas Control, 2015, 43: 233-246.
DOI URL |
[103] | DIAO Y J, ZHU G W, LI X F, et al. Characterizing CO2 plume migration in multi-layer reservoirs with strong heterogeneity and low permeability using time-lapse 2D VSP technology and numerical simulation[J]. International Journal of Greenhouse Gas Control, 2020, 92: 102880. |
[104] | HEATH J E, BAUER S J, BROOME S T, et al. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone[R]. Oak Ridge: Office of Scientific and Technical Information (OSTI), 2013. |
[105] | SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. Princeton: Princeton University, 2008. |
[106] | MCGRAIL B, CABE J, DAVIDSON C, et al. Technoeconomic performance evaluation of compressed air energy storage in the Pacific Northwest[R]. Richland: Pacific Northwest National Laboratory, 2013. |
[107] |
OLDENBURG C M, PAN L H. Porous media compressed-air energy storage (PM-CAES): theory and simulation of the coupled wellbore-reservoir system[J]. Transport in Porous Media, 2013, 97(2): 201-221.
DOI URL |
[108] | JARVIS A S. Feasibility study of porous media compressed air energy storage in South Carolina, United States of America[D]. Clemson: Clemson University, 2015. |
[109] | 郭朝斌, 张可倪, 李采. 压缩空气含水层储能系统设计及可行性分析[J]. 同济大学学报(自然科学版), 2016, 44(7): 1107-1112. |
[110] |
GUO C B, ZHANG K N, LI C, et al. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers[J]. Energy, 2016, 107: 48-59.
DOI URL |
[111] |
LI Y, PAN L H, ZHANG K N, et al. Numerical modeling study of a man-made low-permeability barrier for the compressed air energy storage in high-permeability aquifers[J]. Applied Energy, 2017, 208: 820-833.
DOI URL |
[112] | 董家伟, 李毅. 含水层压缩空气储能选址评价方法研究[J]. 安全与环境工程, 2021, 28(3): 228-239. |
[113] | 何朋朋. 含水层水热运移试验研究[D]. 北京: 中国地质大学(北京), 2011. |
[114] |
MATHEY B. Development and resorption of a thermal disturbance in a phreatic aquifer with natural convection[J]. Journal of Hydrology, 1977, 34(3/4): 315-333.
DOI URL |
[115] |
HOLM T R, EISENREICH S J, ROSENBERG H L, et al. Groundwater geochemistry of short-term aquifer thermal energy storage test cycles[J]. Water Resources Research, 1987, 23(6): 1005-1019.
DOI URL |
[116] |
MILLER R T. Anisotropy in the Ironton and Galesville Sandstone near a thermal-energy-storage well, St. Paul, Minnesota[J]. Ground Water, 1984, 22(5): 532-537.
DOI URL |
[117] |
PALMER C D, BLOWES D W, FRIND E O, et al. Thermal energy storage in an unconfined aquifer: 1. Field Injection Experiment[J]. Water Resources Research, 1992, 28(10): 2845-2856.
DOI URL |
[118] | REGENAUER-LIEB K. Ultra-supercritical Energy Storage[C]// Proceedings World Geothermal Congress. Reykjavik: Regenauer-Lieb and the EUREKA Team, 2020: 1-7. |
[119] | 邬小波, 马捷. 中国地下含水层储能技术及其发展[J]. 能源研究与信息, 1999, 15(4): 8-12. |
[120] | 赵新颖, 万曼影, 马捷. 地下含水层储能及其对环境影响的评估[J]. 能源研究与利用, 2004(1): 51-54. |
[121] | 马捷. 地下含水层储能原理及工程应用[M]. 上海: 上海交通大学出版社, 2007. |
[122] | 王锦程, 万曼影, 马捷. 地下含水层储能技术的应用条件及其关键科学问题[J]. 能源研究与信息, 2003, 19(4): 229-235. |
[123] | 李阳, 薛兆杰. 中国石化油藏地球物理技术进展与探讨[J]. 石油物探, 2020, 59(2): 159-168. |
[124] | ABDELFETTAH Y, BARNES C, DALMAIS E, et al. Full wave inversion of OVSP seismic data for faults delineation and characterization in granite context[C]// Proceeding of the 1st Geoscience & Engineering in Energy Transition Conference. Strasbourg: European Association of Geoscientists & Engineers, 2020: 1-5. |
[125] | 苟量, 张少华, 余刚, 等. 光纤传感推动油藏地球物理技术智能创新发展[J]. 石油科技论坛, 2021, 40(5): 55-64. |
[126] | MOURI T, SHIGEMATSU A, NAKAMURA Y, et al.Application of full waveform inversion to time-lapse walkaway vertical seismic profile data for CO2-EOR monitoring in abu dhabi: a feasibility study on field and synthetic data[C]// Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi: UAE, 2021. |
[127] | 蔡志东, 王世成, 韦永祥, 等. VSP波场研究与应用现状[J]. 石油物探, 2021, 60(1): 81-91. |
[128] | 陈斌, 蔺敬旗, 李兆春, 等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田, 2021, 28(4): 550-554. |
[129] | LELLOUCH A, SCHULTZ R, LINDSEY N J, et al. Low-magnitude seismicity with a downhole distributed acoustic sensing array: examples from the forge geothermal experiment[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2020JB020462. |
[130] |
VERLIAC M, LE CALVEZ J, Microseismic monitoring for reliable CO2 injection and storage: geophysical modeling challenges and opportunities[J]. The Leading Edge, 2021, 40(6): 418-423.
DOI URL |
[131] |
ABDELFETTAH Y, SAILHAC P, LARNIER H, et al. Continuous and time-lapse magnetotelluric monitoring of low volume injection at Rittershoffen geothermal project, northern Alsace - France[J]. Geothermics, 2018, 71: 1-11.
DOI URL |
[132] | 李帝铨, 何继善. 基于差分广域电磁法的三元复合驱监测方法[J]. 石油勘探与开发, 2021, 48(3): 595-602. |
[133] | 赵国, 夏国峰, 董卫斌, 等. 高分辨率井地电磁技术在超深层油气勘探与开发中的应用[C]// SPG/SEG南京2020年国际地球物理会议论文集(中文). 南京: 中国石油学会石油物探专业委员会(SPG)/国际勘探地球物理学家学会(SEG), 2020: 1109-1112. |
[134] | MAGNUSDOTTIR L, JONSSON M T. Casing-to-casing resistance study performed at Reykjanes geothermal field in Iceland to estimate fracture connectivity[J]. Geothermics, 2020, 88: 101860. |
[135] | 周聪, 汤井田, 庞成, 等. 时空阵列混场源电磁法理论及模拟研究[J]. 地球物理学报, 2019, 62(10): 3827-3842. |
[136] | 王达, 李艺, 周红军, 等. 我国地质钻探现状和发展前景分析[J]. 探矿工程(岩土钻掘工程), 2016, 43(4): 1-9. |
[137] | 和国磊, 宋志彬, 胡志兴, 等. 东丽湖地热钻探CGSD-01井钻完井技术[J]. 探矿工程(岩土钻掘工程), 2019, 46(4): 7-13. |
[138] | 任海涛, 田海萍, 于洪波, 等. 高温地热井三牙轮钻头的研制与应用[J]. 天然气工业, 2021, 41(10): 95-100. |
[139] | FINGER J, BLANKENSHIP D. Handbook of best practices for geothermal drilling[R]. Oak Ridge: Office of Scientific and Technical Information (OSTI), 2012. |
[140] | 许刘万, 王艳丽, 殷国乐, 等. 多工艺空气钻探技术在地热井开发中的应用[J]. 探矿工程(岩土钻掘工程), 2016, 43(10): 225-229. |
[141] | 李国栋. 地热钻井技术的若干问题[J]. 地下水, 2008, 30(1): 85-86, 88. |
[142] | BAER D, GUPTA M, LEEN J B, et al. Environmental and atmospheric monitoring using off-axis integrated cavity output spectroscopy (OA-ICOS)[J]. American Laboratory, 2012, 44(10): 20-23. |
[143] | LEE S, KIM E H, YU S, et al. Alternating-current MXene polymer light-emitting diodes[J]. Advanced Functional Materials, 2020, 30(32): 2001224. |
[144] | PILICODE N, NAIK P, NIMITH K M, et al. New cyanopyridine based conjugated polymers carrying auxiliary electron donors: from molecular design to blue emissive PLEDs[J]. Dyes and Pigments, 2020, 174: 108046. |
[145] |
PAUL J B, LAPSON L, ANDERSON J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 2001, 40(27): 4904-4910.
DOI URL |
[146] | KRUSPE T. High Temperature 300℃ measurement while drilling system[R]. Oak Ridge: Office of Scientific and Technical Information (OSTI), 2018. |
[147] | RICHTER P, PARKER T, WOERPEL C, et al. Hydraulic fracture monitoring and optimization in unconventional completions using a high-resolution engineered fibre-optic Distributed Acoustic Sensor[J]. First Break, 2019, 37(4): 63-68. |
[148] | LI X Y, ZHANG J, GRUBERT M, et al. Distributed acoustic and temperature sensing applications for hydraulic fracture diagnostics[C]// Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands: SPE, 2020. |
[149] | 赵学亮, 魏光华. 深部含水层pH值在线监测电位漂移补偿技术[J]. 河南科技大学学报(自然科学版), 2018, 39(6): 55-59, 7. |
[150] | 魏光华, 赵学亮, 李康, 等. 基于双极性电压激励信号的四电极电导率测量仪的设计[J]. 仪表技术与传感器, 2019(5): 34-37, 49. |
[1] | HE Yujiang, LIU Xiao, XING Linxiao, TAN Xianfeng, BU Xianbiao. Scaling process simulation and anti-scaling measures in karst geothermal field in Baoding, Hebei [J]. Earth Science Frontiers, 2022, 29(4): 430-437. |
[2] | WANG Di, WANG Xinwei, MAO Xiang, WU Minghui, LIU Huiying, ZHANG Xuan, WANG Tinghao. Characteristics of geothermal geology of the Wucheng uplift geothermal field [J]. Earth Science Frontiers, 2020, 27(3): 269-280. |
[3] | WANG Guiling, LIU Yanguang, ZHU Xi, ZHANG Wei. The status and development trend of geothermal resources in China [J]. Earth Science Frontiers, 2020, 27(1): 1-9. |
[4] | LUO Wenxing, SUN Guoqiang, ZHOU Yang, LIU Demin, CHEN Qi. Discussion on the mechanism of deep geothermal energy transmission [J]. Earth Science Frontiers, 2020, 27(1): 10-16. |
[5] | HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, KONG Yanlong, WANG Jiyang. The development and outlook of the deep aquifer thermal energy storage (deep-ATES) [J]. Earth Science Frontiers, 2020, 27(1): 17-24. |
[6] | ZHU Ge, LIU Shaowen, LI Xianglan, WU Di. Geothermal regime of the lower reaches of Yangtze River and implications for resource exploration [J]. Earth Science Frontiers, 2020, 27(1): 25-34. |
[7] | ZHANG Ying, FENG Jianyun, LUO Jun, HE Zhiliang, WU Xiaoling. Screening of hot dry rock in the south-central part of the Bohai Bay Basin [J]. Earth Science Frontiers, 2020, 27(1): 35-47. |
[8] | LIU Demin, ZHANG Genyuan, GUAN Junpeng, ZHANG Shuo, ZHANG Jingqi, KONG Linghao, SHAO Junqi. Analysis of geothermal resources potential for hot dry rock in the Subei Basin [J]. Earth Science Frontiers, 2020, 27(1): 48-54. |
[9] | KANG Zhiqiang, ZHANG Qizuan, GUAN Yanwu, LIU Demin, YUAN Jinfu, YANG Zhiqiang, LU Jipu, WANG Xinyu, ZHANG Qinjun, ZHANG Meiling, FENG Minhao. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 55-62. |
[10] | ZHANG Genyuan, LIU Demin, ZHANG Jingqi, WEN Chen, KANG Zhiqiang, GUAN Junpeng. Analysis of structural controls of geothermal resources in the NW-SE trending Boluo-Dayawan fault depression in Huizhou City, Guangdong Province [J]. Earth Science Frontiers, 2020, 27(1): 63-71. |
[11] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
[12] | HE Zhiliang, ZHANG Ying, FENG Jianyun, LUO Jun, LI Pengwei. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China [J]. Earth Science Frontiers, 2020, 27(1): 81-93. |
[13] | QI Xiaofei, SHANGGUAN Shuantong, ZHANG Guobin, PAN Miaomiao, SU Ye, TIAN Lanlan, LI Xiang, QIAO Yongchao, ZHANG Jianyong. Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province [J]. Earth Science Frontiers, 2020, 27(1): 94-102. |
[14] | TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS) [J]. Earth Science Frontiers, 2020, 27(1): 112-122. |
[15] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||