Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 115-128.DOI: 10.13745/j.esf.sf.2022.1.34
Previous Articles Next Articles
XING Shiping1(), GUO Huaming1,*(
), WU Ping2,*(
), HU Xueda1, ZHAO Zhen2, YUAN Youjing2
Received:
2021-12-02
Revised:
2022-01-12
Online:
2022-05-25
Published:
2022-04-28
Contact:
GUO Huaming,WU Ping
CLC Number:
XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin[J]. Earth Science Frontiers, 2022, 29(3): 115-128.
Fig.1 (a) Locations and distribution of sampling sites in the study area and (b-g) variation patters of groundwater (spring water, phreatic water and confined groundwater) fluoride concentrations in various sections of the study area
指标/样品编号 | pH值 | ORP/mV | EC/(μS·cm-1) | ρ/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |||||
泉水(n=47) | 最小值 | 6.57 | 87.2 | 336 | 2.81 | 0.53 | 30.8 | 7.26 |
中位数 | 7.45 | 130 | 531 | 14.0 | 1.86 | 69.2 | 20.8 | |
最大值 | 8.85 | 212 | 3 540 | 601 | 9.93 | 168 | 79.2 | |
平均值 | 7.53 | 133 | 738 | 53.5 | 2.37 | 74.9 | 25.0 | |
潜水(n=22) | 最小值 | 6.75 | 33.3 | 439 | 14.7 | 1.63 | 57.0 | 12.6 |
中位数 | 7.28 | 114 | 1 190 | 93.4 | 4.16 | 119 | 47.2 | |
最大值 | 7.88 | 164 | 13 040 | 2 480 | 15.6 | 450 | 286 | |
平均值 | 7.34 | 107 | 1 950 | 232 | 4.49 | 161 | 59.2 | |
承压水(n=2) | HL-CG-1 | 9.91 | -217 | 7 040 | 1 150 | 11.9 | 419 | 1.33 |
HL-CG-2 | 9.11 | -288 | 3 090 | 576 | 10.6 | 82.9 | 0.12 | |
指标/样品编号 | ρ/(mg·L-1) | δ18O/‰ | δD/‰ | |||||
Cl- | F- | |||||||
泉水(n=47) | 最小值 | 3.85 | 0.00 | 15.8 | 128 | 0.25 | -10.7 | -73.4 |
中位数 | 12.8 | 14.1 | 50.0 | 245 | 0.50 | -8.80 | -60.8 | |
最大值 | 472 | 102 | 1 370 | 388 | 2.32 | -6.46 | -46.6 | |
平均值 | 44.3 | 18.9 | 128 | 258 | 0.69 | -8.87 | -60.5 | |
潜水(n=22) | 最小值 | 14.53 | 3.31 | 43.2 | 220 | 0.32 | -10.9 | -80.2 |
中位数 | 73.5 | 32.0 | 229 | 389 | 1.11 | -9.52 | -70.4 | |
最大值 | 1 580 | 90.4 | 5 210 | 683 | 3.78 | -8.13 | -57.2 | |
平均值 | 168 | 33.2 | 590 | 403 | 1.25 | -9.56 | -68.7 | |
承压水(n=2) | HL-CG-1 | 2 045 | 1.54 | 1 090 | 17.5 | 5.06 | -9.44 | -80.3 |
HL-CG-2 | 599 | 1.51 | 679 | 52.5 | 7.73 | -10.0 | -87.0 |
Table 1 Statistics of various physical and chemical indicators in groundwater samples
指标/样品编号 | pH值 | ORP/mV | EC/(μS·cm-1) | ρ/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |||||
泉水(n=47) | 最小值 | 6.57 | 87.2 | 336 | 2.81 | 0.53 | 30.8 | 7.26 |
中位数 | 7.45 | 130 | 531 | 14.0 | 1.86 | 69.2 | 20.8 | |
最大值 | 8.85 | 212 | 3 540 | 601 | 9.93 | 168 | 79.2 | |
平均值 | 7.53 | 133 | 738 | 53.5 | 2.37 | 74.9 | 25.0 | |
潜水(n=22) | 最小值 | 6.75 | 33.3 | 439 | 14.7 | 1.63 | 57.0 | 12.6 |
中位数 | 7.28 | 114 | 1 190 | 93.4 | 4.16 | 119 | 47.2 | |
最大值 | 7.88 | 164 | 13 040 | 2 480 | 15.6 | 450 | 286 | |
平均值 | 7.34 | 107 | 1 950 | 232 | 4.49 | 161 | 59.2 | |
承压水(n=2) | HL-CG-1 | 9.91 | -217 | 7 040 | 1 150 | 11.9 | 419 | 1.33 |
HL-CG-2 | 9.11 | -288 | 3 090 | 576 | 10.6 | 82.9 | 0.12 | |
指标/样品编号 | ρ/(mg·L-1) | δ18O/‰ | δD/‰ | |||||
Cl- | F- | |||||||
泉水(n=47) | 最小值 | 3.85 | 0.00 | 15.8 | 128 | 0.25 | -10.7 | -73.4 |
中位数 | 12.8 | 14.1 | 50.0 | 245 | 0.50 | -8.80 | -60.8 | |
最大值 | 472 | 102 | 1 370 | 388 | 2.32 | -6.46 | -46.6 | |
平均值 | 44.3 | 18.9 | 128 | 258 | 0.69 | -8.87 | -60.5 | |
潜水(n=22) | 最小值 | 14.53 | 3.31 | 43.2 | 220 | 0.32 | -10.9 | -80.2 |
中位数 | 73.5 | 32.0 | 229 | 389 | 1.11 | -9.52 | -70.4 | |
最大值 | 1 580 | 90.4 | 5 210 | 683 | 3.78 | -8.13 | -57.2 | |
平均值 | 168 | 33.2 | 590 | 403 | 1.25 | -9.56 | -68.7 | |
承压水(n=2) | HL-CG-1 | 2 045 | 1.54 | 1 090 | 17.5 | 5.06 | -9.44 | -80.3 |
HL-CG-2 | 599 | 1.51 | 679 | 52.5 | 7.73 | -10.0 | -87.0 |
Fig.4 Bivariate plots of δD and δ18O values in groundwater samples with varying floride concentrations for three water types in the Hualong-Xunhua Basin
Fig.7 Molar ratio bivariate plots of (a) Na-normalized Ca+ and Mg+ and (b) Na-normalized Ca+ and HCO 3 - in spring water, phreatic water and confined groundwater samples, revealing the dissolution of silicate and carbonate as the main source of ions in groundwater
Fig.8 Bivariate plots of various hydogrochemical indicators in spring water, phreatic water and confined groundwater samples with varying fluoride concentrations
Fig.10 Scatter plots showing the relationships between F- concentration and Na+-Cl- (a) or Na/Ca (mass percent ratio) (b) in spring water and phreatic water samples
Fig.11 Scatter plots showing the relationships between F- concentration and pH (a) or HCO 3 - (b) in spring water, phreatic water and confined groundwater samples
Fig.13 Bivariate plots of (a) F- concentration and F-/Cl- (mass percent ratio) in spring water and phreatic water samples showing the effects of evaporative concentration on F enrichment in groundwater, and (b) scatter plot showing the relationship between F- concentration and δ18O in phreatic water samples (same samples as in the green dashed circle in Fig.4)
[1] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2):260-268. |
[2] |
郭洋楠, 杨俊哲, 张政, 等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J]. 煤炭学报, 2021. DOI: 10.13225/j.cnki.jccs.2021.0388.
DOI |
[3] | KHATTAK J A, FAROOQI A, HUSSAIN I, et al. Groundwater fluoride across the Punjab Plains of Pakistan and India: distribution and underlying mechanisms[J]. Science of the Total Environment, 2022, 806: 151353. |
[4] | 周媛, 闫瑞霞, 许蕊, 等. 水源性碘及氟对甲状腺疾病的影响[J]. 中华地方病学杂志, 2019, 38(3): 249-252. |
[5] |
SU C L, WANG Y X, XIE X J, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Processes and Impacts, 2015, 17(4): 791-801.
DOI URL |
[6] |
KUMAR M, DAS N, GOSWAMI R, et al. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system[J]. Chemosphere, 2016, 164: 657-667.
DOI URL |
[7] | 邢丽娜, 郭华明, 魏亮, 等. 华北平原浅层含氟地下水演化特点及成因[J]. 地球科学与环境学报, 2012, 34(4): 57-67. |
[8] | 李予红, 宋晓光, 胡斌, 等. 张家口坝上地区高氟地下水分布与成因分析[J]. 北京师范大学学报(自然科学版), 2021, 57(6): 745-755. |
[9] |
GUO Q H, WANG Y X, MA T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, northern China[J]. Journal of Geochemical Exploration, 2007, 93(1): 1-12.
DOI URL |
[10] | 张卓, 柳富田, 陈社明, 等. 滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J]. 中国地质, 2021. http://kns.cnki.net/kcms/detail/11.1167.P.20210714.1640.002.html. |
[11] | WANG Z, GUO H M, XING S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372. |
[12] |
GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196.
DOI URL |
[13] | 刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144. |
[14] | 袁有靖, 贾君, 刘毅, 等. 青海省循化县城-彩蓝基地地热资源调查评价报告[R]. 西宁: 青海省环境地质勘查局, 2017. |
[15] | 黄锦忠, 谭红兵, 王若安, 等. 我国西北地区多年降水的氢氧同位素分布特征研究[J]. 水文, 2015, 35(1): 33-39, 50. |
[16] | SRACEK O, RAHOBISOA J J, TRUBA J, et al. Geochemistry of thermal waters and arsenic enrichment at Antsirabe, Central Highlands of Madagascar[J]. Journal of Hydrology, 2019, 577: 123895. |
[17] |
QIN D J, TURNER J V, PANG Z H, Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China[J]. Geothermics, 2005, 34(4), 471-494.
DOI URL |
[18] |
HALIM M A, MAJUMDER R K, NESSA S A, et al. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment[J]. Journal of Hazardous Materials, 2010, 180(1/2/3):50-62.
DOI URL |
[19] |
FRYAR A E, MULLICAN W F, MACKO S A. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA[J]. Hydrogeology Journal, 2001, 9(6): 522-542.
DOI URL |
[20] |
CHAE G T, YUN S T, MAYER B, et al. Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment, 2007, 385(1/2/3): 272-283.
DOI URL |
[21] |
NKOTAGU H. The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania[J]. Journal of African Earth Sciences, 1996, 23(4): 593-605.
DOI URL |
[22] |
VERMA S, MUKHERJEE A, MAHANTA C, et al. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra River Basin[J]. Journal of Hydrology, 2016, 540: 176-195.
DOI URL |
[23] | KNAPPETT P S K, LI Y M, LOZA I, et al. Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico[J]. Water Research, 2020, 185: 116257. |
[24] |
WANG Y X, SHVARTSEV S L, SU C L. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China[J]. Applied Geochemistry, 2009, 24(4): 641-649.
DOI URL |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[3] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[6] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[7] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[8] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[9] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[10] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[11] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[12] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[13] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[14] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[15] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 461
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||