Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 115-128.DOI: 10.13745/j.esf.sf.2022.1.34
Previous Articles Next Articles
XING Shiping1(), GUO Huaming1,*(), WU Ping2,*(), HU Xueda1, ZHAO Zhen2, YUAN Youjing2
Received:
2021-12-02
Revised:
2022-01-12
Online:
2022-05-25
Published:
2022-04-28
Contact:
GUO Huaming,WU Ping
CLC Number:
XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin[J]. Earth Science Frontiers, 2022, 29(3): 115-128.
Fig.1 (a) Locations and distribution of sampling sites in the study area and (b-g) variation patters of groundwater (spring water, phreatic water and confined groundwater) fluoride concentrations in various sections of the study area
指标/样品编号 | pH值 | ORP/mV | EC/(μS·cm-1) | ρ/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |||||
泉水(n=47) | 最小值 | 6.57 | 87.2 | 336 | 2.81 | 0.53 | 30.8 | 7.26 |
中位数 | 7.45 | 130 | 531 | 14.0 | 1.86 | 69.2 | 20.8 | |
最大值 | 8.85 | 212 | 3 540 | 601 | 9.93 | 168 | 79.2 | |
平均值 | 7.53 | 133 | 738 | 53.5 | 2.37 | 74.9 | 25.0 | |
潜水(n=22) | 最小值 | 6.75 | 33.3 | 439 | 14.7 | 1.63 | 57.0 | 12.6 |
中位数 | 7.28 | 114 | 1 190 | 93.4 | 4.16 | 119 | 47.2 | |
最大值 | 7.88 | 164 | 13 040 | 2 480 | 15.6 | 450 | 286 | |
平均值 | 7.34 | 107 | 1 950 | 232 | 4.49 | 161 | 59.2 | |
承压水(n=2) | HL-CG-1 | 9.91 | -217 | 7 040 | 1 150 | 11.9 | 419 | 1.33 |
HL-CG-2 | 9.11 | -288 | 3 090 | 576 | 10.6 | 82.9 | 0.12 | |
指标/样品编号 | ρ/(mg·L-1) | δ18O/‰ | δD/‰ | |||||
Cl- | F- | |||||||
泉水(n=47) | 最小值 | 3.85 | 0.00 | 15.8 | 128 | 0.25 | -10.7 | -73.4 |
中位数 | 12.8 | 14.1 | 50.0 | 245 | 0.50 | -8.80 | -60.8 | |
最大值 | 472 | 102 | 1 370 | 388 | 2.32 | -6.46 | -46.6 | |
平均值 | 44.3 | 18.9 | 128 | 258 | 0.69 | -8.87 | -60.5 | |
潜水(n=22) | 最小值 | 14.53 | 3.31 | 43.2 | 220 | 0.32 | -10.9 | -80.2 |
中位数 | 73.5 | 32.0 | 229 | 389 | 1.11 | -9.52 | -70.4 | |
最大值 | 1 580 | 90.4 | 5 210 | 683 | 3.78 | -8.13 | -57.2 | |
平均值 | 168 | 33.2 | 590 | 403 | 1.25 | -9.56 | -68.7 | |
承压水(n=2) | HL-CG-1 | 2 045 | 1.54 | 1 090 | 17.5 | 5.06 | -9.44 | -80.3 |
HL-CG-2 | 599 | 1.51 | 679 | 52.5 | 7.73 | -10.0 | -87.0 |
Table 1 Statistics of various physical and chemical indicators in groundwater samples
指标/样品编号 | pH值 | ORP/mV | EC/(μS·cm-1) | ρ/(mg·L-1) | ||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |||||
泉水(n=47) | 最小值 | 6.57 | 87.2 | 336 | 2.81 | 0.53 | 30.8 | 7.26 |
中位数 | 7.45 | 130 | 531 | 14.0 | 1.86 | 69.2 | 20.8 | |
最大值 | 8.85 | 212 | 3 540 | 601 | 9.93 | 168 | 79.2 | |
平均值 | 7.53 | 133 | 738 | 53.5 | 2.37 | 74.9 | 25.0 | |
潜水(n=22) | 最小值 | 6.75 | 33.3 | 439 | 14.7 | 1.63 | 57.0 | 12.6 |
中位数 | 7.28 | 114 | 1 190 | 93.4 | 4.16 | 119 | 47.2 | |
最大值 | 7.88 | 164 | 13 040 | 2 480 | 15.6 | 450 | 286 | |
平均值 | 7.34 | 107 | 1 950 | 232 | 4.49 | 161 | 59.2 | |
承压水(n=2) | HL-CG-1 | 9.91 | -217 | 7 040 | 1 150 | 11.9 | 419 | 1.33 |
HL-CG-2 | 9.11 | -288 | 3 090 | 576 | 10.6 | 82.9 | 0.12 | |
指标/样品编号 | ρ/(mg·L-1) | δ18O/‰ | δD/‰ | |||||
Cl- | F- | |||||||
泉水(n=47) | 最小值 | 3.85 | 0.00 | 15.8 | 128 | 0.25 | -10.7 | -73.4 |
中位数 | 12.8 | 14.1 | 50.0 | 245 | 0.50 | -8.80 | -60.8 | |
最大值 | 472 | 102 | 1 370 | 388 | 2.32 | -6.46 | -46.6 | |
平均值 | 44.3 | 18.9 | 128 | 258 | 0.69 | -8.87 | -60.5 | |
潜水(n=22) | 最小值 | 14.53 | 3.31 | 43.2 | 220 | 0.32 | -10.9 | -80.2 |
中位数 | 73.5 | 32.0 | 229 | 389 | 1.11 | -9.52 | -70.4 | |
最大值 | 1 580 | 90.4 | 5 210 | 683 | 3.78 | -8.13 | -57.2 | |
平均值 | 168 | 33.2 | 590 | 403 | 1.25 | -9.56 | -68.7 | |
承压水(n=2) | HL-CG-1 | 2 045 | 1.54 | 1 090 | 17.5 | 5.06 | -9.44 | -80.3 |
HL-CG-2 | 599 | 1.51 | 679 | 52.5 | 7.73 | -10.0 | -87.0 |
Fig.4 Bivariate plots of δD and δ18O values in groundwater samples with varying floride concentrations for three water types in the Hualong-Xunhua Basin
Fig.7 Molar ratio bivariate plots of (a) Na-normalized Ca+ and Mg+ and (b) Na-normalized Ca+ and HCO 3 - in spring water, phreatic water and confined groundwater samples, revealing the dissolution of silicate and carbonate as the main source of ions in groundwater
Fig.8 Bivariate plots of various hydogrochemical indicators in spring water, phreatic water and confined groundwater samples with varying fluoride concentrations
Fig.10 Scatter plots showing the relationships between F- concentration and Na+-Cl- (a) or Na/Ca (mass percent ratio) (b) in spring water and phreatic water samples
Fig.11 Scatter plots showing the relationships between F- concentration and pH (a) or HCO 3 - (b) in spring water, phreatic water and confined groundwater samples
Fig.13 Bivariate plots of (a) F- concentration and F-/Cl- (mass percent ratio) in spring water and phreatic water samples showing the effects of evaporative concentration on F enrichment in groundwater, and (b) scatter plot showing the relationship between F- concentration and δ18O in phreatic water samples (same samples as in the green dashed circle in Fig.4)
[1] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2):260-268. |
[2] |
郭洋楠, 杨俊哲, 张政, 等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J]. 煤炭学报, 2021. DOI: 10.13225/j.cnki.jccs.2021.0388.
DOI |
[3] | KHATTAK J A, FAROOQI A, HUSSAIN I, et al. Groundwater fluoride across the Punjab Plains of Pakistan and India: distribution and underlying mechanisms[J]. Science of the Total Environment, 2022, 806: 151353. |
[4] | 周媛, 闫瑞霞, 许蕊, 等. 水源性碘及氟对甲状腺疾病的影响[J]. 中华地方病学杂志, 2019, 38(3): 249-252. |
[5] |
SU C L, WANG Y X, XIE X J, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Processes and Impacts, 2015, 17(4): 791-801.
DOI URL |
[6] |
KUMAR M, DAS N, GOSWAMI R, et al. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system[J]. Chemosphere, 2016, 164: 657-667.
DOI URL |
[7] | 邢丽娜, 郭华明, 魏亮, 等. 华北平原浅层含氟地下水演化特点及成因[J]. 地球科学与环境学报, 2012, 34(4): 57-67. |
[8] | 李予红, 宋晓光, 胡斌, 等. 张家口坝上地区高氟地下水分布与成因分析[J]. 北京师范大学学报(自然科学版), 2021, 57(6): 745-755. |
[9] |
GUO Q H, WANG Y X, MA T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, northern China[J]. Journal of Geochemical Exploration, 2007, 93(1): 1-12.
DOI URL |
[10] | 张卓, 柳富田, 陈社明, 等. 滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J]. 中国地质, 2021. http://kns.cnki.net/kcms/detail/11.1167.P.20210714.1640.002.html. |
[11] | WANG Z, GUO H M, XING S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372. |
[12] |
GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196.
DOI URL |
[13] | 刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144. |
[14] | 袁有靖, 贾君, 刘毅, 等. 青海省循化县城-彩蓝基地地热资源调查评价报告[R]. 西宁: 青海省环境地质勘查局, 2017. |
[15] | 黄锦忠, 谭红兵, 王若安, 等. 我国西北地区多年降水的氢氧同位素分布特征研究[J]. 水文, 2015, 35(1): 33-39, 50. |
[16] | SRACEK O, RAHOBISOA J J, TRUBA J, et al. Geochemistry of thermal waters and arsenic enrichment at Antsirabe, Central Highlands of Madagascar[J]. Journal of Hydrology, 2019, 577: 123895. |
[17] |
QIN D J, TURNER J V, PANG Z H, Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China[J]. Geothermics, 2005, 34(4), 471-494.
DOI URL |
[18] |
HALIM M A, MAJUMDER R K, NESSA S A, et al. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment[J]. Journal of Hazardous Materials, 2010, 180(1/2/3):50-62.
DOI URL |
[19] |
FRYAR A E, MULLICAN W F, MACKO S A. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA[J]. Hydrogeology Journal, 2001, 9(6): 522-542.
DOI URL |
[20] |
CHAE G T, YUN S T, MAYER B, et al. Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment, 2007, 385(1/2/3): 272-283.
DOI URL |
[21] |
NKOTAGU H. The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania[J]. Journal of African Earth Sciences, 1996, 23(4): 593-605.
DOI URL |
[22] |
VERMA S, MUKHERJEE A, MAHANTA C, et al. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra River Basin[J]. Journal of Hydrology, 2016, 540: 176-195.
DOI URL |
[23] | KNAPPETT P S K, LI Y M, LOZA I, et al. Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico[J]. Water Research, 2020, 185: 116257. |
[24] |
WANG Y X, SHVARTSEV S L, SU C L. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China[J]. Applied Geochemistry, 2009, 24(4): 641-649.
DOI URL |
[1] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[2] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[3] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[4] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[5] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[6] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[7] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[8] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[9] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[10] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[11] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[12] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[13] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[14] | XIE Fei, ZHANG Yuxi, LIU Jingtao, ZHOU Bing, XIANG Xiaoping. Groundwater quality and pollution assessment based on ‘hierarchical ladder evaluation method’: A case study of Tongchuan Cit [J]. Earth Science Frontiers, 2021, 28(5): 15-25. |
[15] | ZHU Hui, YE Shujun, WU Jichun, XU Haizhen. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021, 28(5): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||