Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 360-370.DOI: 10.13745/j.esf.sf.2023.2.84
Previous Articles Next Articles
HE Jiahui1,2(), MAO Hairu1,*(
), XUE Yang3, LIAO Fu1, GAO Bai4, RAO Zhi5, YANG Yang5, LIU Yuanyuan4, WANG Guangcai1,*(
)
Received:
2022-12-17
Revised:
2023-04-13
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain[J]. Earth Science Frontiers, 2024, 31(3): 360-370.
分类 | 数值 类型 | ρB/(mg·L-1) | Eh/mV | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DO | TDS | Ca2+ | Na+ | K+ | Mg2+ | Cl- | |||||||
枯水期 地下水 | 最小值 | 2.38 | 40 | 2.93 | 3.7 | 0.97 | 0.85 | 1.45 | 1.36 | 5.41 | 0.1 | 107 | 4.75 |
最大值 | 12.5 | 1 520 | 98.21 | 52.72 | 30.54 | 57.38 | 70.88 | 147.89 | 333.49 | 206.31 | 534 | 6.89 | |
平均值 | 9.9 | 396.35 | 29.72 | 20.11 | 10.77 | 10.85 | 24.46 | 27.27 | 93.89 | 41.78 | 239.82 | 6.17 | |
丰水期 地下水 | 最小值 | 0.12 | 15.3 | 1.66 | 0.97 | 0.46 | 0.54 | 2.98 | 0.66 | 5.79 | 1.4 | -6 | 5.06 |
最大值 | 11.68 | 441.5 | 90.41 | 56.63 | 70.36 | 44.02 | 85 | 365.85 | 353.41 | 224.88 | 575 | 7.34 | |
平均值 | 4.75 | 270 | 38.82 | 18.88 | 10.29 | 11.54 | 21.18 | 45.62 | 111.51 | 46.72 | 347.84 | 6.05 |
Table 1 The descriptive statistics of analytical data for groundwater
分类 | 数值 类型 | ρB/(mg·L-1) | Eh/mV | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DO | TDS | Ca2+ | Na+ | K+ | Mg2+ | Cl- | |||||||
枯水期 地下水 | 最小值 | 2.38 | 40 | 2.93 | 3.7 | 0.97 | 0.85 | 1.45 | 1.36 | 5.41 | 0.1 | 107 | 4.75 |
最大值 | 12.5 | 1 520 | 98.21 | 52.72 | 30.54 | 57.38 | 70.88 | 147.89 | 333.49 | 206.31 | 534 | 6.89 | |
平均值 | 9.9 | 396.35 | 29.72 | 20.11 | 10.77 | 10.85 | 24.46 | 27.27 | 93.89 | 41.78 | 239.82 | 6.17 | |
丰水期 地下水 | 最小值 | 0.12 | 15.3 | 1.66 | 0.97 | 0.46 | 0.54 | 2.98 | 0.66 | 5.79 | 1.4 | -6 | 5.06 |
最大值 | 11.68 | 441.5 | 90.41 | 56.63 | 70.36 | 44.02 | 85 | 365.85 | 353.41 | 224.88 | 575 | 7.34 | |
平均值 | 4.75 | 270 | 38.82 | 18.88 | 10.29 | 11.54 | 21.18 | 45.62 | 111.51 | 46.72 | 347.84 | 6.05 |
水量变 化分类 | 平均离子浓度ρB/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | K+ | Cl- | ||||
枯水期 | 20.11 | 29.72 | 10.85 | 10.77 | 24.46 | 36.49 | 41.78 | 93.89 |
丰水期 | 18.88 | 38.82 | 11.54 | 10.29 | 21.18 | 45.62 | 46.72 | 111.51 |
变化率/% | -6 | 31 | 6 | -4 | -13 | 25 | 12 | 19 |
Table 2 Seasonal variation of main ions in groundwater
水量变 化分类 | 平均离子浓度ρB/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | K+ | Cl- | ||||
枯水期 | 20.11 | 29.72 | 10.85 | 10.77 | 24.46 | 36.49 | 41.78 | 93.89 |
丰水期 | 18.88 | 38.82 | 11.54 | 10.29 | 21.18 | 45.62 | 46.72 | 111.51 |
变化率/% | -6 | 31 | 6 | -4 | -13 | 25 | 12 | 19 |
离子 | 地下水各化学参数间的相关系数 | |||||||
---|---|---|---|---|---|---|---|---|
Cl- | Na+ | K+ | Mg2+ | Ca2+ | ||||
Cl- | 1 | |||||||
0.691** | 1 | |||||||
0.491** | 0.414** | 1 | ||||||
0.334* | 0.038 | 0.366** | 1 | |||||
Na+ | 0.863** | 0.692** | 0.691** | 0.422** | 1 | |||
K+ | 0.660** | 0.575** | 0.339* | 0.274* | 0.712** | 1 | ||
Mg2+ | 0.638** | 0.658** | 0.658** | 0.756** | 0.714** | 0.378** | 1 | |
Ca2+ | 0.546** | 0.467** | 0.763** | 0.799** | 0.678** | 0.379** | 0.868** | 1 |
Table 3 Correlation analysis of groundwater chemical parameters in study area
离子 | 地下水各化学参数间的相关系数 | |||||||
---|---|---|---|---|---|---|---|---|
Cl- | Na+ | K+ | Mg2+ | Ca2+ | ||||
Cl- | 1 | |||||||
0.691** | 1 | |||||||
0.491** | 0.414** | 1 | ||||||
0.334* | 0.038 | 0.366** | 1 | |||||
Na+ | 0.863** | 0.692** | 0.691** | 0.422** | 1 | |||
K+ | 0.660** | 0.575** | 0.339* | 0.274* | 0.712** | 1 | ||
Mg2+ | 0.638** | 0.658** | 0.658** | 0.756** | 0.714** | 0.378** | 1 | |
Ca2+ | 0.546** | 0.467** | 0.763** | 0.799** | 0.678** | 0.379** | 0.868** | 1 |
Fig.3 The component planes showing weight vector values of variables in wet and dry season. Yellow and blue represent the high and low values of variables, respectively.
取样时间 | Moran’s I | P-Value | Z-Value |
---|---|---|---|
枯水期 | 0.418 | 0.001 | 6.45 |
丰水期 | 0.561 | 0.001 | 7.18 |
变化量 | 0.361 | 0.001 | 2.34 |
Table 1 Global Moran’s I value of groundwater NO 3 - in wet and dry season
取样时间 | Moran’s I | P-Value | Z-Value |
---|---|---|---|
枯水期 | 0.418 | 0.001 | 6.45 |
丰水期 | 0.561 | 0.001 | 7.18 |
变化量 | 0.361 | 0.001 | 2.34 |
Fig.6 Indicator of spatial association (a: N O 3 - in dry season; b: N O 3 - in wet season; c: the difference of N O 3 - between dry season and wet season)
Fig.7 The indicator of spatial autocorrelation maps of (a) N O 3 - in dry season, (b) N O 3 - in the wet season, (c) the difference of N O 3 - between dry season and wet seasonThe indicator of spatial autocorrelation maps of (a) N O 3 - in dry season, (b) N O 3 - in the wet season, (c) the difference of N O 3 - between dry season and wet season
化学成分 | 模拟出的浓度变化值/(mmol·L-1) | |
---|---|---|
枯水期 | 丰水期 | |
白云石 | 1.366 | 1.286 |
方解石 | — | — |
石膏 | 0.685 | 0.639 |
石盐 | — | — |
钾盐 | 0.81 | 0.699 |
CaX2 | -0.191 | -0.505 |
NaX | 0.381 | 1.01 |
钠长石 | — | — |
钾长石 | 0.661 | 0.825 |
伊利石 | -1.102 | -1.375 |
高岭石 | 0.937 | 0.568 |
CO2(g) | -6.44 | — |
O2(g) | 5.594 | 5.801 |
硝化作用 | 2.8 | 2.9 |
Table 5 The results of mass transfers for selected inverse geochemical models
化学成分 | 模拟出的浓度变化值/(mmol·L-1) | |
---|---|---|
枯水期 | 丰水期 | |
白云石 | 1.366 | 1.286 |
方解石 | — | — |
石膏 | 0.685 | 0.639 |
石盐 | — | — |
钾盐 | 0.81 | 0.699 |
CaX2 | -0.191 | -0.505 |
NaX | 0.381 | 1.01 |
钠长石 | — | — |
钾长石 | 0.661 | 0.825 |
伊利石 | -1.102 | -1.375 |
高岭石 | 0.937 | 0.568 |
CO2(g) | -6.44 | — |
O2(g) | 5.594 | 5.801 |
硝化作用 | 2.8 | 2.9 |
[1] | 张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1456-1461. |
[2] | 吴庭雯, 袁磊, 韩双宝, 等. 安固里淖内陆河流域地下水硝酸盐污染时空分布特征及成因分析[J]. 环境化学, 2021, 40(8): 2515-2523. |
[3] | 黄旭娟. 环鄱阳湖区浅层地下水化学和同位素特征及成因分析[D]. 北京: 中国地质大学(北京), 2017. |
[4] |
SOLDATOVA E, GUSEVA N, SUN Z X, et al. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake Basin, China)[J]. Journal of Contaminant Hydrology, 2017, 202: 59-69.
DOI PMID |
[5] | 董一慧, 刘春篁, 昝金晶, 等. 鄱阳湖流域浅层地下水硝酸盐氮时空分布特征与来源[J]. 长江流域资源与环境, 2021, 30(12): 2972-2981. |
[6] | 杨洵, 曹聪, 谢亚巍, 等. 重庆主城都市区地下水质量与污染评价: 基于层级阶梯评价法[J]. 三峡生态环境监测, 2023, 8(3): 36-44. |
[7] | 付瑶, 郑囡, 王泽明, 等. 基于氮氧同位素技术的大明湖总氮来源研究[J]. 三峡生态环境监测, 2021, 6(4): 48-54. |
[8] | 刘茂涵, 刘海燕, 张卫民, 等. 鄱阳湖流域赣江北支水体和沉积物中稀土元素的含量和分异特征[J]. 现代地质, 2022, 36(2): 389-405. |
[9] | MA Q S, GE W Y, TIAN F J. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of the Nanchang section of Ganfu Plain[J]. Sustainability, 2022, 14(13): 7976. |
[10] | 徐芳斐. 环鄱阳湖区浅层地下水三氮分布特征及来源分析[D]. 北京: 中国地质大学(北京), 2017. |
[11] | 杨涛, 王世杰, 陈生华. 环鄱阳湖地区浅层地下水化学特征及成因分析[J]. 安徽农业科学, 2012, 40(1): 405-407. |
[12] | MAO H R, WANG G C, RAO Z, et al. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics[J]. Journal of Cleaner Production, 2021, 329: 129697. |
[13] | 甘春娟, 朱子奇, 刘梦一, 等. 秀山县城区雨水径流污染特征综合评价[J]. 三峡生态环境监测, 2020, 5(4): 73-81. |
[14] |
金贵, 邓祥征, 赵晓东, 等. 2005—2014年长江经济带城市土地利用效率时空格局特征[J]. 地理学报, 2018, 73(7): 1242-1252.
DOI |
[15] | 卞建民, 查恩爽, 汤洁, 等. 吉林西部砷中毒区高砷地下水反向地球化学模拟[J]. 吉林大学学报(地球科学版), 2010, 40(5): 1098-1103. |
[16] | 龚星, 陈植华, 罗朝晖. 罗河铁矿水文地球化学特征及成因[J]. 地球科学, 2014, 39(3): 293-302. |
[17] | 王金金. 北京平谷平原区浅层地下水化学特征演化研究[D]. 成都: 成都理工大学, 2020. |
[18] | 王瑞. 松嫩平原地下水水化学特征及演化机理研究[D]. 长春: 吉林大学, 2015. |
[19] | 文帮勇, 杨忠芳, 侯青叶, 等. 江西鄱阳湖地区土壤酸化与人为源氮的关系[J]. 现代地质, 2011, 25(3): 562-568. |
[20] | 于璐, 郑天元, 郑西来. 地下水硝酸盐污染源解析及氮同位素分馏效应研究进展[J]. 现代地质, 2022, 36(2): 563-573. |
[21] |
李海明, 李梦娣, 肖瀚, 等. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178.
DOI |
[22] | 张列宇, 马阳阳, 李国文, 等. 稳定同位素技术在水体硝酸盐污染源解析中的研究进展[J]. 环境工程技术学报, 2023, 13(4): 1373-1383. |
[23] | 吴蓉, 廖凯, 邓燕青, 等. 江西省大气降水水质特征分析及其对地表水环境的影响[J]. 江西水利科技, 2020, 46(5): 365-373. |
[24] |
张广禄, 刘海燕, 郭华明, 等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503.
DOI |
[25] | 吴初. 红碱淖流域地下水循环机理及湖水位动态预测研究[D]. 北京: 中国地质大学(北京), 2020. |
[26] |
郭华明, 尹嘉鸿, 严松, 等. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399.
DOI |
[27] | XU S, LI S L, SU J, et al. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering[J]. Science of the Total Environment, 2021, 768: 144343. |
[28] | 翟大兴, 杨忠芳, 柳青青, 等. 鄱阳湖流域水化学特征及影响因素分析[J]. 地学前缘, 2012, 19(1): 264-276. |
[29] | XIONG Y J, DU Y, DENG Y M, et al. Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin[J]. Environmental Pollution, 2021, 290: 118119. |
[30] |
张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(4): 194-205.
DOI |
[31] | 吴通航, 刘海燕, 张卫民, 等. 鄱阳湖流域赣江下游水化学特征及人类健康风险评价[J]. 现代地质, 2022, 36(2): 427-438. |
[32] | 王宏青. 氮氧同位素示踪赣江南昌段水体硝酸盐来源[D]. 抚州: 东华理工大学, 2019. |
[33] | MAO H R, WANG G C, LIAO F, et al. Geochemical evolution of groundwater under the influence of human activities: a case study in the southwest of Poyang Lake Basin[J]. Applied Geochemistry, 2022, 140: 105299. |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[3] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[4] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[5] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[6] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[7] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[8] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[9] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[10] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[11] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[12] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[13] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[14] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[15] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||