Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 485-503.DOI: 10.13745/j.esf.sf.2023.2.53
Previous Articles Next Articles
ZHANG Guanglu1,2(), LIU Haiyan1,2,*(
), GUO Huaming3, SUN Zhanxue1,2, WANG Zhen1,2, WU Tonghang1,2
Received:
2022-06-01
Revised:
2022-12-23
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain[J]. Earth Science Frontiers, 2023, 30(4): 485-503.
人群分类 | 暴露参数 | |||
---|---|---|---|---|
IR/(L·d-1) | EF/(d·a-1) | ED/a | BW/kg | |
婴儿 | 0.65 | 365 | 0.5 | 6.94 |
儿童 | 21.5 | 365 | 6 | 25.9 |
成年男性 | 3.62 | 365 | 30 | 73.0 |
成年女性 | 2.66 | 365 | 30 | 64.0 |
Table 1 HHRA model parameters
人群分类 | 暴露参数 | |||
---|---|---|---|---|
IR/(L·d-1) | EF/(d·a-1) | ED/a | BW/kg | |
婴儿 | 0.65 | 365 | 0.5 | 6.94 |
儿童 | 21.5 | 365 | 6 | 25.9 |
成年男性 | 3.62 | 365 | 30 | 73.0 |
成年女性 | 2.66 | 365 | 30 | 64.0 |
初始变量 | 各主成分中变量的载荷量 | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
pH | -0.73 | 0.12 | -0.37 |
ORP | -0.04 | 0.26 | 0.67 |
组分浓度 | |||
TDS | 0.92 | 0.32 | 0.17 |
Cl- | 0.75 | 0.38 | 0.38 |
SO42- | 0.77 | 0.37 | -0.26 |
HCO3- | 0.74 | 0.15 | 0.41 |
Ca2+ | 0.96 | -0.06 | -0.03 |
K+ | 0.04 | 0.86 | 0.00 |
Mg2+ | 0.76 | 0.34 | 0.22 |
Na+ | 0.44 | 0.71 | 0.26 |
NO3- | 0.82 | 0.11 | 0.04 |
Mn | 0.18 | -0.07 | 0.61 |
特征值 | 5.47 | 1.86 | 1.49 |
方差贡献率/% | 45.6 | 15.5 | 12.5 |
累积贡献率/% | 45.6 | 61.1 | 73.6 |
Table 3 Rotated principal components
初始变量 | 各主成分中变量的载荷量 | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
pH | -0.73 | 0.12 | -0.37 |
ORP | -0.04 | 0.26 | 0.67 |
组分浓度 | |||
TDS | 0.92 | 0.32 | 0.17 |
Cl- | 0.75 | 0.38 | 0.38 |
SO42- | 0.77 | 0.37 | -0.26 |
HCO3- | 0.74 | 0.15 | 0.41 |
Ca2+ | 0.96 | -0.06 | -0.03 |
K+ | 0.04 | 0.86 | 0.00 |
Mg2+ | 0.76 | 0.34 | 0.22 |
Na+ | 0.44 | 0.71 | 0.26 |
NO3- | 0.82 | 0.11 | 0.04 |
Mn | 0.18 | -0.07 | 0.61 |
特征值 | 5.47 | 1.86 | 1.49 |
方差贡献率/% | 45.6 | 15.5 | 12.5 |
累积贡献率/% | 45.6 | 61.1 | 73.6 |
Fig.13 Box plots comparing nitrate hazard quotient ( H Q N O 3 - ) values in deep and shallow groundwater for different population groups in BJ (a) and SJZ (b) areas
[1] |
ZHANG Y H, DAI Y S, WANG Y, et al. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of the Total Environment, 2021, 784: 147186.
DOI URL |
[2] | 张婧, 马贵宏, 高雅, 等. 华北山前平原典型井灌区地下水水位变化影响因素分析[J]. 河海大学学报(自然科学版), 2022, 50(1): 21-28, 84. |
[3] |
DÖLL P, HOFFMANN-DOBREV H, PORTMANN F T, et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations[J]. Journal of Geodynamics, 2012, 59/60: 143-156.
DOI URL |
[4] | 万长园. 华北平原典型区地下水三氮时空分布与运移数值模拟研究[D]. 阜新: 辽宁工程技术大学, 2014. |
[5] | 张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1456-1461. |
[6] |
FENECH C, ROCK L, NOLAN K, et al. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review[J]. Water Research, 2012, 46(7): 2023-2041.
DOI PMID |
[7] | 刘琰, 乔肖翠, 江秋枫, 等. 滹沱河冲洪积扇地下水硝酸盐含量的空间分布特征及影响因素[J]. 农业环境科学学报, 2016, 35(5): 947-954. |
[8] |
SMITH K A, ANTHONY S G, HENDERSON D, et al. Critical drainage and nitrate leaching losses from manures applied to freely draining soils in Great Britain[J]. Soil Use and Management, 2003, 19(4): 312-320.
DOI URL |
[9] |
BABIKER I S, MOHAMED M A A, TERAO H, et al. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system[J]. Environment International, 2004, 29(8): 1009-1017.
DOI PMID |
[10] | 陈淑峰, 李帷, 胡克林, 等. 基于GIS的华北高产粮区地下水硝态氮含量时空变异特征[J]. 环境科学, 2009, 30(12): 3541-3547. |
[11] |
ZHANG W L, TIAN Z X, ZHANG N, et al. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems and Environment, 1996, 59(3): 223-231.
DOI URL |
[12] | WHO World Health Organization. Guideline for drinking water quality[S]. 4th ed. Geneva: World Health Organization, 2011. |
[13] | 叶浩, 刘长礼, 姜建梅, 等. 滹沱河石家庄段地下水污染风险评价[J]. 地质通报, 2008, 27(7): 1065-1070. |
[14] | 贺国平, 刘培斌, 慕星, 等. 永定河冲洪积扇地下水中硝酸盐来源的同位素识别[J]. 水利学报, 2016, 47(4): 582-588. |
[15] | 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 北京: 中国标准出版社, 2022. |
[16] |
JOHNSON P T J, TOWNSEND A R, CLEVELAND C C, et al. Linking environmental nutrient enrichment and disease emergence in humans and wildlife[J]. Ecological Applications, 2010, 20(1): 16-29.
DOI URL |
[17] | DAVIDSON E A, DAVID M B, GALLOWAY J N, et al. Excess nitrogen in the U.S. environment: trends, risks, and solutions[J]. Issues in Ecology, 2012, 15: 1-16. |
[18] | 陈建耀, 王亚, 张洪波, 等. 地下水硝酸盐污染研究综述[J]. 地理科学进展, 2006, 25(1): 34-44. |
[19] | 陈耀宁, 智国铮, 袁兴中, 等. 基于三角随机模拟和ArcGIS的河流水环境健康风险评价模型[J]. 环境工程学报, 2016, 10(4): 1799-1806. |
[20] | 章艳红, 唐玉红, 陈俊华, 等. 萍水河地表水重金属污染特征及健康风险评价[J]. 有色金属(冶炼部分), 2021(7): 116-125. |
[21] |
WANG H L, LU K Y, SHEN C Y, et al. Human health risk assessment of groundwater nitrate at a two geomorphic units transition zone in northern China[J]. Journal of Environmental Sciences, 2021, 110(12): 38-47.
DOI URL |
[22] |
LI D F, ZHAI Y Z, LEI Y, et al. Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111524.
DOI URL |
[23] |
PANDA B, CHIDAMBARAM S, SNOW D, et al. Source apportionment and health risk assessment of nitrate in foothill aquifers of Western Ghats, South India[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113075.
DOI URL |
[24] | 钱永, 张兆吉, 费宇红, 等. 华北平原浅层地下水可持续利用潜力分析[J]. 中国生态农业学报, 2014, 22(8): 890-897. |
[25] | 王金翠, 张英, 温吉利, 等. 华北平原气候时空演变特征[J]. 现代地质, 2015, 29(2): 299-306. |
[26] |
刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144.
DOI |
[27] |
张小文, 何江涛, 黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J]. 地学前缘, 2021, 28(4): 206-218.
DOI |
[28] | 王仕琴, 郑文波, 孔晓乐. 华北农区浅层地下水硝酸盐分布特征及其空间差异性[J]. 中国生态农业学报, 2018, 26(10): 1476-1482. |
[29] | 张翠云, 张胜, 李政红, 等. 滹沱河上游区地表水和地下水同位素特征[J]. 干旱区资源与环境, 2008, 22(5): 160-164. |
[30] | 万长园, 王明玉, 王慧芳, 等. 华北平原典型剖面地下水三氮污染时空分布特征[J]. 地球与环境, 2014, 42(4): 472-479. |
[31] | 张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009: 25-62. |
[32] | 林忠辉, 莫兴国. 历史时期黄淮海平原农作制度变迁与农业生产环境演变[J]. 中国生态农业学报, 2011, 19(5): 1072-1079. |
[33] | 敦宇, 许嘉文, 白雪山, 等. 地下水灌溉对华北平原农田土壤碳库转化影响[J]. 环境科学研究, 2021, 34(5): 1187-1195. |
[34] | 李晓欣, 马洪斌, 胡春胜, 等. 华北山前平原农田土壤硝态氮淋失与调控研究[J]. 中国生态农业学报, 2011, 19(5): 1109-1114. |
[35] | 张玉铭, 胡春胜, 毛任钊, 等. 华北山前平原农田土壤肥力演变与养分管理对策[J]. 中国生态农业学报, 2011, 19(5): 1143-1150. |
[36] | 梁慧雅, 王仕琴, 魏守才. 华北山前平原典型厚包气带硝态氮分布累积规律[J]. 土壤, 2017, 49(6): 1179-1186. |
[37] | 王茜, 沈彦俊, 裴宏伟, 等. 华北山前平原灌溉农田深层土壤水分动态特征及渗漏量估算[J]. 南水北调与水利科技, 2013, 11(1): 155-160. |
[38] | 裴宏伟, 沈彦俊, 刘昌明. 华北平原典型农田氮素与水分循环[J]. 应用生态学报, 2015, 26(1): 283-296. |
[39] | 袁志发, 周静芋. 多元统计分析[M]. 北京: 科学出版社, 2002. |
[40] |
刘学娜, 李海明, 李梦娣, 等. 天津平原区加油站地下水石油烃污染特征及其生物降解机理研究[J]. 地学前缘, 2022, 29(3): 227-238.
DOI |
[41] | RICHARDS L E, JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research, 1988, 25(4): 410. |
[42] |
吕晓立, 郑跃军, 韩占涛, 等. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因[J]. 地学前缘, 2022, 29(3): 88-98.
DOI |
[43] | 吴娟娟, 卞建民, 万罕立, 等. 松嫩平原地下水氮污染健康风险评估[J]. 中国环境科学, 2019, 39(8): 3493-3500. |
[44] |
ZHANG Y T, WU J H, XU B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, Northwest China[J]. Environmental Earth Sciences, 2018, 77(7): 1-12.
DOI URL |
[45] | MEANS B. Risk-assessment guidance for Superfund. Volume 1. Human health evaluation manual. Part A. Interim report (final)[R]. Washington: Office of Emergency and Remedial Response, US Environmental Protection Agency, 1989. |
[46] | 黄建洪, 张琴, 王晋昆, 等. 水环境污染健康风险评价中饮水量暴露参数的研究进展[J]. 卫生研究, 2021, 50(1): 146-153. |
[47] | 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. |
[48] | 环境保护部. 中国人群暴露参数手册(儿童卷 0-5岁)[M]. 北京: 中国环境出版社, 2016. |
[49] | 环境保护部. 中国人群暴露参数手册(儿童卷 6-17岁)[M]. 北京: 中国环境出版社, 2016. |
[50] | 仲少鑫, 钱岩, 郭庶, 等. 空气污染物暴露人群活动模式研究进展[J]. 环境与健康杂志, 2019, 36(9): 836-842. |
[51] |
ZHAI Y Z, LEI Y, WU J, et al. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data[J]. Environmental Science and Pollution Research, 2017, 24(4): 3640-3653.
DOI URL |
[52] |
GELBERG K H, CHURCH L, CASEY G, et al. Nitrate levels in drinking water in rural New York State[J]. Environmental Research, 1999, 80(1): 34-40.
PMID |
[53] |
MAO H R, WANG G C, RAO Z, et al. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics[J]. Journal of Cleaner Production, 2021, 329: 129697.
DOI URL |
[54] |
LIU F, ZOU J W, LIU J R, et al. Factors controlling groundwater chemical evolution with the impact of reduced exploitation[J]. Catena, 2022, 214: 106261.
DOI URL |
[55] |
GAO Z J, HAN C, YUAN S Y, et al. Assessment of the hydrochemistry, water quality, and human health risk of groundwater in the northwest of Nansi Lake Catchment, North China[J]. Environmental Geochemistry and Health, 2022, 44(3): 961-977.
DOI |
[56] |
LIU J T, PENG Y M, LI C S, et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 2021, 268: 115947.
DOI URL |
[57] | 徐建国, 李生果, 朱恒华, 等. 南四湖流域平原区浅层地下水氮污染特征[J]. 工程勘察, 2010, 38(5): 40-44. |
[58] |
SOLDATOVA E, GUSEVA N, BYCHINSKY V. Modelling ofredox conditions in the shallow groundwater: a case study of agricultural areas in the Poyang Lake Basin, China[J]. Procedia Earth and Planetary Science, 2017, 17: 197-200.
DOI URL |
[59] |
SU H, KANG W D, XU Y J, et al. Assessing groundwater quality and health risks of nitrogen pollution in the Shenfu mining area of Shaanxi Province, Northwest China[J]. Exposure and Health, 2018, 10(2): 77-97.
DOI URL |
[1] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[2] | LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review [J]. Earth Science Frontiers, 2024, 31(1): 64-76. |
[3] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[4] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[5] | HUANG Liuqin, LI Linxin, JIANG Hongchen. Formation and iron oxidation mechanisms of BIFs: Research progress review and outlook [J]. Earth Science Frontiers, 2023, 30(2): 333-346. |
[6] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[7] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[8] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[9] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[10] | LI Zhihong, WANG Guangcai, CAI Wutian, LIU Fei, HUANG Dandan. Reactive materials and structural design of PRB for remediation of a Cr(Ⅵ) contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 186-196. |
[11] | ZHANG Xiaowen, HE Jiangtao, HUANG Guanxing. Iron and manganese in shallow groundwater in Shijiazhuang: Distribution characteristics and a cause analysis [J]. Earth Science Frontiers, 2021, 28(4): 206-218. |
[12] | DAI Wan, JIANG Xiaowei, LUO Yinfei, ZHANG Hong, LEI Yude, TONG Jue. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province [J]. Earth Science Frontiers, 2021, 28(1): 420-427. |
[13] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
[14] | LIU Shuqin,ZHANG Shangjun,NIU Maofei,YU Li. Technology process and application prospect of underground coal gasification [J]. Earth Science Frontiers, 2016, 23(3): 97-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||