Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 468-479.DOI: 10.13745/j.esf.sf.2022.2.71
GUO Qiaona1,*(), ZHAO Yue1, ZHOU Zhifang1, LIN Jin2, DAI Yunfeng2, LI Mengjun1
Received:
2021-10-21
Revised:
2022-04-28
Online:
2022-07-25
Published:
2022-07-28
Contact:
GUO Qiaona
CLC Number:
GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities[J]. Earth Science Frontiers, 2022, 29(4): 468-479.
取样 | 经度/(°) | 纬度/(°) | 盐度w(NaCl)/‰ | 223Ra活度/(dpm·hL-1) | 224Ra活度/(dpm·hL-1) | 224Ra/223Ra AR |
---|---|---|---|---|---|---|
S1 | 120.47 | 37.83 | 31.30 | 1.39±0.17 | 18.11±1.27 | 13.03±1.56 |
S2 | 120.35 | 37.78 | 34.40 | 2.06±0.25 | 40.16±2.81 | 19.50±2.06 |
S3 | 120.27 | 37.74 | 33.70 | 2.2±0.26 | 29.74±2.08 | 13.52±1.58 |
S4 | 120.20 | 37.70 | 33.30 | 1.22±0.15 | 25.9±1.81 | 21.23±2.19 |
S5 | 120.12 | 37.66 | 32.10 | 3.22±0.40 | - | - |
S6 | 120.04 | 37.72 | 33.50 | 1.27±0.15 | 21.27±1.49 | 17.32±1.85 |
S7 | 120.14 | 37.77 | 33.40 | - | - | - |
S8 | 120.22 | 37.82 | 33.30 | 2.7±0.32 | 33.15±2.32 | 12.28±1.48 |
S9 | 120.32 | 37.86 | 34.90 | 1.4±0.17 | 18.44±1.29 | 13.17±1.56 |
S10 | 120.44 | 37.89 | 34.60 | 1.27±0.07 | 15.32±1.07 | 12.06±1.17 |
S11 | 120.42 | 37.96 | 36.50 | 1.14±0.14 | 16.9±1.18 | 14.82±1.7 |
S12 | 120.28 | 37.92 | 33.70 | 1.06±0.13 | 14.98±1.05 | 14.13±1.65 |
S13 | 120.17 | 37.88 | 33.60 | 1.96±0.23 | 31.89±2.23 | 16.27±1.79 |
S14 | 120.08 | 37.83 | 33.40 | 1.62±0.19 | 25.94±1.82 | 16.01±1.77 |
S15 | 119.99 | 37.77 | 32.50 | 1.48±0.18 | 20.66±1.45 | 13.96±1.63 |
S16 | 119.92 | 37.83 | 32.90 | 1.65±0.2 | 17.52±1.23 | 10.62±1.36 |
S17 | 120.03 | 37.89 | 32.10 | 0.78±0.09 | 22.64±1.59 | 29.03±2.74 |
S18 | 120.14 | 37.94 | 35.20 | 2.08±0.25 | 27.51±1.93 | 13.23±1.57 |
S19 | 120.25 | 37.99 | 34.30 | 0.83±0.1 | 16.06±1.12 | 19.35±2.04 |
S20 | 120.40 | 38.03 | 34.50 | 1.15±0.14 | 5.62±0.39 | 4.89±0.84 |
GW1 | 120.33 | 37.65 | 30.20 | - | - | |
GW2 | 120.25 | 37.55 | 33.10 | 32.98±3.96 | 1 528.41±106.99 | |
GW3 | 120.39 | 37.69 | 29.80 | 10.19±1.22 | 1 011.75±70.82 | |
GW4 | 120.32 | 37.67 | 34.50 | 40.23±4.83 | 2 028.05±141.96 | |
GW5 | 120.34 | 37.69 | 33.10 | 38.47±4.61 | 1 975.74±138.30 | |
GW6 | 120.43 | 37.73 | 31.20 | 8.77±1.05 | 544.23±38.096 |
Table 1 Radium activity and salinity data for seawater and groundwater samples
取样 | 经度/(°) | 纬度/(°) | 盐度w(NaCl)/‰ | 223Ra活度/(dpm·hL-1) | 224Ra活度/(dpm·hL-1) | 224Ra/223Ra AR |
---|---|---|---|---|---|---|
S1 | 120.47 | 37.83 | 31.30 | 1.39±0.17 | 18.11±1.27 | 13.03±1.56 |
S2 | 120.35 | 37.78 | 34.40 | 2.06±0.25 | 40.16±2.81 | 19.50±2.06 |
S3 | 120.27 | 37.74 | 33.70 | 2.2±0.26 | 29.74±2.08 | 13.52±1.58 |
S4 | 120.20 | 37.70 | 33.30 | 1.22±0.15 | 25.9±1.81 | 21.23±2.19 |
S5 | 120.12 | 37.66 | 32.10 | 3.22±0.40 | - | - |
S6 | 120.04 | 37.72 | 33.50 | 1.27±0.15 | 21.27±1.49 | 17.32±1.85 |
S7 | 120.14 | 37.77 | 33.40 | - | - | - |
S8 | 120.22 | 37.82 | 33.30 | 2.7±0.32 | 33.15±2.32 | 12.28±1.48 |
S9 | 120.32 | 37.86 | 34.90 | 1.4±0.17 | 18.44±1.29 | 13.17±1.56 |
S10 | 120.44 | 37.89 | 34.60 | 1.27±0.07 | 15.32±1.07 | 12.06±1.17 |
S11 | 120.42 | 37.96 | 36.50 | 1.14±0.14 | 16.9±1.18 | 14.82±1.7 |
S12 | 120.28 | 37.92 | 33.70 | 1.06±0.13 | 14.98±1.05 | 14.13±1.65 |
S13 | 120.17 | 37.88 | 33.60 | 1.96±0.23 | 31.89±2.23 | 16.27±1.79 |
S14 | 120.08 | 37.83 | 33.40 | 1.62±0.19 | 25.94±1.82 | 16.01±1.77 |
S15 | 119.99 | 37.77 | 32.50 | 1.48±0.18 | 20.66±1.45 | 13.96±1.63 |
S16 | 119.92 | 37.83 | 32.90 | 1.65±0.2 | 17.52±1.23 | 10.62±1.36 |
S17 | 120.03 | 37.89 | 32.10 | 0.78±0.09 | 22.64±1.59 | 29.03±2.74 |
S18 | 120.14 | 37.94 | 35.20 | 2.08±0.25 | 27.51±1.93 | 13.23±1.57 |
S19 | 120.25 | 37.99 | 34.30 | 0.83±0.1 | 16.06±1.12 | 19.35±2.04 |
S20 | 120.40 | 38.03 | 34.50 | 1.15±0.14 | 5.62±0.39 | 4.89±0.84 |
GW1 | 120.33 | 37.65 | 30.20 | - | - | |
GW2 | 120.25 | 37.55 | 33.10 | 32.98±3.96 | 1 528.41±106.99 | |
GW3 | 120.39 | 37.69 | 29.80 | 10.19±1.22 | 1 011.75±70.82 | |
GW4 | 120.32 | 37.67 | 34.50 | 40.23±4.83 | 2 028.05±141.96 | |
GW5 | 120.34 | 37.69 | 33.10 | 38.47±4.61 | 1 975.74±138.30 | |
GW6 | 120.43 | 37.73 | 31.20 | 8.77±1.05 | 544.23±38.096 |
营养盐 | 分区 | 地下水营养盐浓度/ (mg·L-1) | 海水营养盐浓度/ (mg·L-1) | ||
---|---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | ||
DIP | A区 | 0.10~0.12 | 0.11 | 0.04~0.09 | 0.06 |
B区 | 0.05~0.23 | 0.11 | 0.05~0.10 | 0.08 | |
A区 | 0.58~20.00 | 10.29 | 0.09~0.15 | 0.11 | |
B区 | 0.01~2.66 | 1.09 | 0.10~0.74 | 0.40 | |
A区 | 0.05~0.34 | 0.20 | 0.02~0.05 | 0.03 | |
B区 | 0.004~0.12 | 0.10 | 0.03~0.07 | 0.04 |
Table 2 Nitrogen and phosphorus nutrient contents in seawater and groundwater of the study area
营养盐 | 分区 | 地下水营养盐浓度/ (mg·L-1) | 海水营养盐浓度/ (mg·L-1) | ||
---|---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | ||
DIP | A区 | 0.10~0.12 | 0.11 | 0.04~0.09 | 0.06 |
B区 | 0.05~0.23 | 0.11 | 0.05~0.10 | 0.08 | |
A区 | 0.58~20.00 | 10.29 | 0.09~0.15 | 0.11 | |
B区 | 0.01~2.66 | 1.09 | 0.10~0.74 | 0.40 | |
A区 | 0.05~0.34 | 0.20 | 0.02~0.05 | 0.03 | |
B区 | 0.004~0.12 | 0.10 | 0.03~0.07 | 0.04 |
参数 | 符号 | A区取值 | B区取值 | 单位 |
---|---|---|---|---|
面积 | Abay | 3.92×108 | 1.05×109 | m2 |
体积 | Vbay | 3.22×109 | 8.87×109 | m3 |
水体表现年龄 | t | 11.14~21.87 | 5.90~13.75 | d |
盐度总量 | Ms | 1.10×1011 | 2.97×1011 | |
224Ra地下水 端员值 | 224Ragw | 544.23 | 1 635.99 | dpm/ (100 L) |
224Ra外海水 背景值 | 224Rasea | 10.84 | 16.79 | dpm/ (100 L) |
外海盐度值 | Ss | 34.40 | 33.60 | ‰ |
蒸发量 | ET | 3.39 | 3.39 | mm·d-1 |
降雨量 | PT | 1.75 | 1.75 | mm·d-1 |
Table 3 Parameters for SFGD and SGD calculations
参数 | 符号 | A区取值 | B区取值 | 单位 |
---|---|---|---|---|
面积 | Abay | 3.92×108 | 1.05×109 | m2 |
体积 | Vbay | 3.22×109 | 8.87×109 | m3 |
水体表现年龄 | t | 11.14~21.87 | 5.90~13.75 | d |
盐度总量 | Ms | 1.10×1011 | 2.97×1011 | |
224Ra地下水 端员值 | 224Ragw | 544.23 | 1 635.99 | dpm/ (100 L) |
224Ra外海水 背景值 | 224Rasea | 10.84 | 16.79 | dpm/ (100 L) |
外海盐度值 | Ss | 34.40 | 33.60 | ‰ |
蒸发量 | ET | 3.39 | 3.39 | mm·d-1 |
降雨量 | PT | 1.75 | 1.75 | mm·d-1 |
研究区域 | 方法 | SGD排泄速度/ (cm·d-1) | 文献 |
---|---|---|---|
渤海湾 | 223Ra,228Ra | 1.98~4.78 | [ |
黄河 | Ra,222Rn | 4.50~13.90 | [ |
大亚湾 | 223Ra,224Ra,226Ra,228Ra | 4.83~6.01 | [ |
本文 | 223Ra,224Ra | 1.90~2.57 1.42~1.81 |
Table 4 SGD rates in different study areas in China
研究区域 | 方法 | SGD排泄速度/ (cm·d-1) | 文献 |
---|---|---|---|
渤海湾 | 223Ra,228Ra | 1.98~4.78 | [ |
黄河 | Ra,222Rn | 4.50~13.90 | [ |
大亚湾 | 223Ra,224Ra,226Ra,228Ra | 4.83~6.01 | [ |
本文 | 223Ra,224Ra | 1.90~2.57 1.42~1.81 |
[1] | BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66: 3-33. |
[2] | ZHANG Y, LI H L, XIAO K, et al. Improving estimation of submarine groundwater discharge using radium and radon tracers: application in Jiaozhou Bay, China[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8263-8277. |
[3] | ZHANG Y, SANTOS I R, LI H L, et al. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales[J]. Geochimica et Cosmochimica Acta, 2020, 290: 201-215. |
[4] | WANG X J, LI H L, ZHANG Y, et al. Investigation of submarine groundwater discharge and associated nutrient inputs into Laizhou Bay (China) using radium quartet[J]. Marine Pollution Bulletin, 2020, 157: 111359. |
[5] | LI L, BARRY D A, STAGNITTI F, et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research, 1999, 35(11): 3253-3259. |
[6] | MOORE W S. Fifteen years experience in measuring Ra-224 and Ra-223 by delayed-coincidence counting[J]. Marine Chemistry, 2008, 109(3/4): 188-197. |
[7] | 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646. |
[8] | BURNETT W C, AGGARWAL P K, AURELI A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3): 498-543. |
[9] | XU B C, BURNETT W, DIMOVA N, et al. Hydrodynamics in the yellow river estuary via radium isotopes: ecological perspectives[J]. Continental Shelf Research, 2013, 66: 19-28. |
[10] | WANG Q Q, LI H L, ZHANG Y, et al. Submarine groundwater discharge and its implication for nutrient budgets in the western Bohai Bay, China[J]. Journal of Environmental Radioactivity, 2020, 212, 106132. |
[11] | DULAIOVA H, BUMETT W C. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers[J]. Marine Chemistry, 2008, 109: 395-408. |
[12] | RABALAIS N N, TURNER R E, JUSTIC D, et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf[J]. Estuaries, 1996, 19(2): 386-407. |
[13] | CHUNG S Y, SENAPATHI V, PARK K H, et al. Source and remediation for heavy metals of soils at an iron mine of Ulsan City, Korea[J]. Arabian Journal of Geosciences, 2018, 11(24): 769-790. |
[14] | ZHOU Y Q, BEFUS K M, SAWYER A H, et al. Opportunities and challenges in computing fresh groundwater discharge to continental coastlines: a multimodel comparison for the United States Gulf and Atlantic Coasts[J]. Water Resources Research, 2018, 54(10): 8363-8380. |
[15] | LUO X, JIAO J J, MOORE W S, et al. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production[J]. Marine Pollution Bulletin, 2014, 82(1/2): 144-154. |
[16] | LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102: 11-31. |
[17] | MOORE W S, BLANTON J O, JOYE S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111(C9): C09006. |
[18] | POST V E A, GROEN J, KOOI H, et al. Offshore fresh groundwater reserves as a global phenomenon[J]. Nature, 2013, 504(7478): 71-78. |
[19] | HUGHES A L H, WILSON A M, MOORE W S. Groundwater transport and radium variability in coastal porewaters[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 94-104. |
[20] | DEBNATH P, MUKHERJEE A. Quantification of tidally-influenced seasonal groundwater discharge to the Bay of Bengal by seepage meter study[J]. Journal of Hydrology, 2016, 537: 106-116. |
[21] | PRAKASH R, SRINIVASAMOORTHY K, GOPINATH S, et al. Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India[J]. Applied Water Science, 2018, 8(1): 1-13. |
[22] | GUO Q N, LI H L. Terrestrial-originated submarine groundwater discharge through deep multilayered aquifer systems beneath the seafloor[J]. Hydrological Processes, 2015, 29(2): 295-309. |
[23] | VAERET L, LEIJNSE A, CUAMBA F, et al. Holocene dynamics of the salt-fresh groundwater interface under a sand island, Inhaca, Mozambique[J]. Quaternary International, 2012, 257: 74-82. |
[24] | GOPINATH S, SRINIVASAMOORTHY K, SARAVANAN K, et al. Modeling saline water intrusion in Nagapattinam coastal aquifers, Tamilnadu, India[J]. Modeling Earth Systems and Environment, 2016, 2(2): 1-10. |
[25] | GOPINATH S, SRINIVASAMOORTHY K, SARAVANAN K, et al. Characterizing groundwater quality and seawater intrusion in coastal aquifers of Nagapattinam and Karaikal, South India using hydrogeochemistry and modeling techniques[J]. Human and Ecological Risk Assessment, 2019, 25(1/2): 314-334. |
[26] | MOORE W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575): 612-614. |
[27] | SANTOS I R, PETERSON R N, EYRE B D, et al. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes[J]. Marine Chemistry, 2010, 121(1/2/3/4): 37-48. |
[28] | SADAT-NOORI M, SANTOS I R, SANDERS C J, et al. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes[J]. Journal of Hydrology, 2015, 528: 703-719. |
[29] | RODELLAS V, GARCIA-ORELLANA J, TREZZI G, et al. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange[J]. Geochimica et Cosmochimica Acta, 2017, 196: 58-73. |
[30] | PETERSON R N, BURNETT W C, TANIGUCHI M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China[J]. Journal of Geophysical Research, 2008, 113(C9). |
[31] | GARCIA-ORELLANA J, COCHRAN J K, BOKUNIEWICZ H, et al. Evaluation of Ra-224 as a tracer for submarine groundwater discharge in Long Island Sound (NY)[J]. Geochimica et Cosmochimica Acta, 2014, 141: 314-330. |
[32] | WANG X J, ZHANG Y, LUO M H, et al. Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area[J]. Science of the Total Environment, 2021, 763: 144616. |
[33] | MOORE W S. Ages of continental shelf waters determined from 223Ra and 224Ra[J]. Journal of Geophysical Research: Oceans, 2000, 105(C9): 22117-22122. |
[34] | MOORE W S, BLANTON J O, JOYE S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111(C09): C09006. |
[35] | ZHANG Y, LI H L, WANG X J, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103-113. |
[36] | KIM G, RYU J W, YANG H S, et al. Submarine ground-water discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: implications for global silicate fluxes[J]. Earth and Planetary Science Letter, 2005, 237(1/2): 156-166. |
[37] | MOORE W S. Seasonal distribution and flux of radium isotopes on the southeastern US continental shelf[J]. Journal of Geophysical Research, 2007, 112(C10): C10013. |
[38] | LEE C M, JIAO J J, LUO X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong[J]. Science of the Total Environment, 2012, 433: 427-433. |
[39] | RODELLAS V, GARCIA-ORELLANA J, MASQUE P, et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3926-3930. |
[40] | SLOMP C P, VAN CAPPELLEN P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact[J]. Journal of Hydrology, 2004, 295(1/2/3/4): 64-86. |
[41] | TANIGUCHI M, STIEGLITZ T, ISHITOBI T. Temporal variability of water quality of submarine groundwater discharge in Ubatuba, Brazil[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 484-492. |
[42] | MAKINGS U, SANTOS I R, MAHER D T, et al. Importance of budgets for estimating the input of groundwater derived nutrients to an eutrophic tidal river and estuary[J]. Estuarine, Coastal and Shelf Science, 2014, 143: 65-76. |
[43] | GARRISON G H, GLENN C R, MCMURTRY G M. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i[J]. Limnology and Oceanography, 2003, 48(2): 920-928. |
[44] | HU C, MULLER-KARGER F E, SWARZENSKI P W. Hurricanes, submarine groundwater discharge and Florida’s red tides[J]. Geophysical Research Letters, 2006, 33(11). |
[45] | LI D Y, WU Y X, GAO E K, et al. Simulation of seawater intrusion area using feedforward neural network in Longkou, China[J]. Network Weekly News, 2020, 12(8): 2107. |
[46] | WU J C, MENG F H, WANG X W, et al. The development and control of the seawater intrusion in the eastern coastal of Laizhou Bay, China[J]. Environmental Geology, 2008, 54(8): 1763-1770. |
[47] | LI X J, CHEN L L, ZHOU Z Q, et al. Spatio-temporal variation of subtidal macrobenthic fauna and the ecological assessment of Longkou Artificial Island construction in Bohai Sea, China[J]. Journal of Oceanology and Limnology, 2019, 38(6): 1811-1824. |
[48] | TANG G Q, YI L X, LIU L L, et al. Factors influencing the distribution of Ra-223 and Ra-224 in the coastal waters off Tanggu and Qikou in Bohai bay[J]. Continental Shelf Research, 2015, 109: 177-187. |
[49] | DOUGLAS A R, MURGULET D, PETERSON R N. Submarine groundwater discharge in an anthropogenically disturbed, semi-arid estuary[J]. Journal of Hydrology, 2020, 580: 124369. |
[50] | WANG Q Q, LI H L, ZHANG Y, et al. Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China[J]. Science of the Total Environment, 2019, 695: 133873. |
[51] | 张萌. 大亚湾海底地下水排泄及营养盐和重金属通量的评估[D]. 北京: 中国地质大学(北京), 2017. |
[1] | SHI Chen-Xi, MO Che-Wen, MAO Long-Jiang, LIU Hui. The impact of middle to late Holocene environmental changes on human activities in the Qujialing region, Jingshan, Hubei Province. [J]. Earth Science Frontiers, 2009, 16(6): 120-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||