Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 455-467.DOI: 10.13745/j.esf.sf.2021.10.3
Previous Articles Next Articles
LU Shuai1,2,3(), SU Xiaosi4, FENG Xiaoyu5, SUN Chao6
Received:
2020-07-23
Revised:
2021-11-05
Online:
2022-07-25
Published:
2022-07-28
CLC Number:
LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration[J]. Earth Science Frontiers, 2022, 29(4): 455-467.
井号 | 井深/m | 过滤器深度/m | 止水深度/m | |
---|---|---|---|---|
顶部 | 底部 | |||
HB1-2\HB2-2\HB3-2\HB4-2 | 6.0 | 4.0~<5.0 | 3.0~<4.0 | 5.0~<6.0 |
HB1-3\HB2-3\HB3-3\HB4-3 | 7.0 | 5.0~<6.0 | 4.0~<5.0 | 6.0~<7.0 |
HB1-4\HB2-4\HB3-4\HB4-4 | 8.0 | 6.0~<7.0 | 5.0~<6.0 | 7.0~<8.0 |
HB1-5\HB2-5\HB3-5\HB4-5 | 9.0 | 7.0~<8.0 | 6.0~<7.0 | 8.0~<9.0 |
HB1-6\HB2-6\HB3-6\HB4-6 | 10.0 | 8.0~<9.0 | 7.0~<8.0 | 9.0~<10.0 |
HB3-7\HB4-7 | 11.0 | 9.0~10.0 | 8.0~9.0 | 10.0~11.0 |
Table 1 Monitoring well related parameters
井号 | 井深/m | 过滤器深度/m | 止水深度/m | |
---|---|---|---|---|
顶部 | 底部 | |||
HB1-2\HB2-2\HB3-2\HB4-2 | 6.0 | 4.0~<5.0 | 3.0~<4.0 | 5.0~<6.0 |
HB1-3\HB2-3\HB3-3\HB4-3 | 7.0 | 5.0~<6.0 | 4.0~<5.0 | 6.0~<7.0 |
HB1-4\HB2-4\HB3-4\HB4-4 | 8.0 | 6.0~<7.0 | 5.0~<6.0 | 7.0~<8.0 |
HB1-5\HB2-5\HB3-5\HB4-5 | 9.0 | 7.0~<8.0 | 6.0~<7.0 | 8.0~<9.0 |
HB1-6\HB2-6\HB3-6\HB4-6 | 10.0 | 8.0~<9.0 | 7.0~<8.0 | 9.0~<10.0 |
HB3-7\HB4-7 | 11.0 | 9.0~10.0 | 8.0~9.0 | 10.0~11.0 |
Fig.3 Diagram of DOC, HCO 3 -, Mn2+, Fe2+, SO 4 2 -, As concentration during river water infiltration (The sampling depth of groundwater is 5.0-6.0 m)
[1] | DIEM S, CIRPKA O A, SCHIRMER M. Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach[J]. Journal of Hydrology, 2013, 505(22): 352-363. |
[2] | GANDY C J, SMITH J W N, JARVIS A P. Attenuation of mining-derived pollutants in the hyporheic zone: a review[J]. Science of the Total Environment, 2007, 373(2/3): 435-446. |
[3] | HUBBS S A. Riverbank filtration hydrology[M]. Dordrecht: Springer Science & Business Media, 2007. |
[4] | HUNTSCHA S, RODRIGUEZ VELOSA D M, SCHROTH M H, et al. Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests[J]. Environmental Science and Technology, 2013, 47(20): 11512-11521. |
[5] | STUTE M, ZHENG Y, SCHLOSSER P, et al. Hydrological control of As concentrations in Bangladesh groundwater[J]. Water Resources Research, 2007, 43(9): 2363-2367. |
[6] | TUFENKJI N, RYAN J N, ELIMELECH M. The promise of bank filtration[J]. Environmental Science and Technology, 2002, 36(21): 422A-428A. |
[7] | 吴耀国, 王超, 王惠民. 河岸渗滤作用脱氮机理及其特点的试验[J]. 城市环境与城市生态, 2003, 16 (6): 298-300. |
[8] | ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5575): 1985-1990. |
[9] | HARVEY J W, FULLER C C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance[J]. Water Resources Research, 1998, 34(4): 623-636. |
[10] | POLOMČIĆ D, HAJDIN B, STEVANOVIĆ Z. et al. Groundwater management by riverbank filtration and an infiltration channel: the case of Obrenovac, Serbia[J]. Hydrogeology Journal, 2013, 21(7): 1519-1530. |
[11] | PROMMA K, ZHENG C, ASNACHINDA P. Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly[J]. Hydrogeology Journal, 2007, 15(3): 495-513. |
[12] | SOPHOCLEOUS M. Interactions between groundwater and surface water: the state of the science[J]. Hydrogeology Journal, 2002, 10(1): 52-67. |
[13] | 付松波, 陈志. 我国地方性砷中毒基础研究工作进展[J]. 中国地方病学杂志, 2006, 25(5): 585-587. |
[14] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[15] | ABDUL K S M, JAYASINGHE S S, CHANDANA E P, et al. Arsenic and human health effects: a review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3): 828-846. |
[16] | FENDORF S, MICHAEL H A, GEEN A V. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127. |
[17] | GUO H, WEN D, LIU Z, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41(1): 196-217. |
[18] | SMITH A H, LOPIPERO P A, BATES M N, et al. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576): 2145-2146. |
[19] | 郭琦. 银川盆地北部浅层地下水水文地球化学特征及砷的富集机理[D]. 北京: 中国地质大学(北京), 2014. |
[20] | 郭欣欣. 江汉平原浅层含水层系统中砷释放与迁移过程研究[D]. 武汉: 中国地质大学, 2014. |
[21] | SMEDLEY P L, KINNIBURGH D G. A review of the source, behavior and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. |
[22] | 苏春利, WIN hlaing, 王焰新, 等. 大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析[J]. 地质科技情报, 2009, 28(3): 120-126. |
[23] | 熊峰, 甘义群, 段艳华. 江汉平原地下水中氮素与砷迁移富集的相关性研究[J]. 安全与环境工程, 2015, 22(2): 39-43. |
[24] | 余倩, 谢先军, 马瑞, 等. 地下水系统中砷迁移富集过程的水文地球化学模拟[J]. 地质科技情报, 2013, 32(6): 116-122. |
[25] | SRACEK O, BHATTACHARYA P, JACKS G, et al. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments[J]. Applied Geochemistry, 2004, 19(2): 169-180. |
[26] | ZHENG Y, STUTE M, GEEN A V, et al. Redox control of arsenic mobilization in Bangladesh groundwater[J]. Applied Geochemistry, 2004, 19(2): 201-214. |
[27] | HARVEY C F, SWARTZ C H, BADRUZZAMAN A B, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298(5598): 1602-1606. |
[28] | HARVEY C F, ASHFAQUE K N, YU W, et al. Groundwater dynamics and arsenic contamination in Bangladesh[J]. Chemical Geology, 2006, 228(1/2/3): 112-136. |
[29] | KLUMP S, KIPFER R, CIRPKA O A, et al. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium[J]. Environmental Science and Technology, 2006, 40(1): 243-250. |
[30] | BENNER S G, POLIZZOTTO M L, KOCAR B D, et al. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia[J]. Applied Geochemistry, 2008, 23(11): 3072-3087. |
[31] | LAWSON M, BALLENTINE C J, POLYA D A, et al. The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release[J]. Mineralogical Magazine, 2008, 72(1): 441-444. |
[32] | POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203): 505-508. |
[33] | SU X, LU S, YUAN W, et al. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China[J]. Hydrogeology Journal, 2018, 26(5): 1573-1589. |
[34] | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
[35] | SHARIF M U, DAVIS R K, STEELE K F, et al. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas[J]. Journal of Contaminant Hydrology, 2008, 99(1/2/3/4): 49-67. |
[36] | 甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4): 37-49. |
[37] | 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. |
[38] | 罗艳丽, 李晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析[J]. 环境科学学报, 2017, 37(8): 2897-2903. |
[39] | APPELO C A J, VAN DER WEIDEN M J J, TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science and Technology, 2002, 36(14): 3096-3103. |
[40] | 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[41] | Guo H, Li Y, Zhao K, et al. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1847-1854. |
[42] | NICOLLI H B, BUNDSCHUH J, GARCÍA J W, et al. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina)[J]. Water Research, 2010, 44(19): 5589-5604. |
[43] | VINSON D S, MCINTOSH J C, DWYER G S, et al. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)[J]. Applied Geochemistry, 2011, 26(8): 1364-1376. |
[44] | 倪萍. 河套盆地含水层沉积物赋存态砷及对地下水砷富集的影响[D]. 北京: 中国地质大学(北京), 2016. |
[45] | 何薪, 马腾, 王焰新, 等. 内蒙古河套平原高砷地下水赋存环境特征[J]. 中国地质, 2010, 37(3): 781-788. |
[46] | 张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 2010, 37(3): 551-562. |
[47] | GUO H, LIU Z, DING S, et al. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao Basin, Inner Mongolia[J]. Environmental Pollution, 2015, 203: 50-59. |
[48] | PEDERSEN H D, POSTMA D, JAKOBSEN R. Release of arsenic associated with the reduction and transformation of iron oxides[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4116-4129. |
[49] | 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. |
[50] | 杨洁, 林年丰, 卞建民, 等. 内蒙河套平原砷中毒病区砷的环境地球化学研究[J]. 水文地质工程地质, 1996, 23(1): 49-54. |
[51] | 周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252-259. |
[52] | WELCH A H, LICO M S. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada[J]. Applied Geochemistry, 1998, 13(4): 521-539. |
[53] | 沈照理, 郭华明, 徐刚, 等. 地下水化学异常与地方病[J]. 自然杂志, 2010, 32(2): 83-89. |
[54] | 严怡君, 谢先军, 肖紫怡, 等. 灌溉对非饱和带中砷迁移转化过程的影响[J]. 地质科技情报, 2018, 37(5): 206-214. |
[55] | MCARTHUR J M, BANERJEE D M, HUDSON-EDWARDS K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications[J]. Applied Geochemistry, 2004, 19(8): 1255-1293. |
[56] | RADU T, SUBACZ J L, PHILLIPPI J M, et al. Effects of dissolved carbonate on arsenic adsorption and mobility[J]. Environmental Science and Technology, 2005, 39(20): 7875-7882. |
[57] | XIE X, ELLIS A, WANG Y, et al. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China[J]. Science of the Total Environment, 2009, 407(12): 3823-3835. |
[58] | XIE X, WANG Y, ELLIS A, et al. Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2013, 498: 103-112. |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[3] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | LIANG Huizhi, GUO Zhaohui, ZHANG Yunxia, XU Rui. Mineralogical characteristics and release mechanism of arsenic-thallium from As-bearing tailings [J]. Earth Science Frontiers, 2024, 31(2): 20-30. |
[6] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[7] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[8] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[9] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[10] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[11] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[12] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[13] | ZHANG Yuting, DUAN Liqin, SONG Jinming, ZHANG Naixing, YIN Meiling, LI Xuegang, YUAN Huamao. Arsenic migration and transformation mechanism and microbial regulation at the sediment-water interface of the Changjiang estuary [J]. Earth Science Frontiers, 2022, 29(4): 144-155. |
[14] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[15] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||