[1] |
PROHASKA T, STINGEDER G. Speciation of arsenic[M]//CORNELIS R, CARUSO J, CREWS H, et al. Handbook of elemental speciation II:species in the environment, food, medicine and occupational health. Chichester, England: John Wiley & Sons, Ltd, 2005: 69-85.
|
[2] |
OREMLAND R S, STOLZ J F. The ecology of arsenic[J]. Science, 2003, 300(5621): 939-944.
|
[3] |
DANG D H, TESSIER E, LENOBLE V, et al. Key parameters controlling arsenic dynamics in coastal sediments: an analytical and modeling approach[J]. Marine Chemistry, 2014, 161: 34-46.
|
[4] |
LI L, REN J L, CAO X H, et al. Process study of biogeochemical cycling of dissolved inorganic arsenic during spring phytoplankton bloom, southern Yellow Sea[J]. Science of the Total Environment, 2017, 593/594: 430-438.
|
[5] |
HARVEY C F, SWARTZ C H, BADRUZZAMAN A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298(5598): 1602-1606.
|
[6] |
FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075-1090.
|
[7] |
BALTAZAR T C, TOSHIFUMI I, MYLAH V T, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of the Total Environment, 2018, 645: 1522-1553.
|
[8] |
GORNY J, BILLON G, LESVEN L, et al. Arsenic behavior in river sediments under redox gradient: a review[J]. Science of the Total Environment, 2015, 505: 423-434.
|
[9] |
BOWELL R J. Sorption of arsenic by iron oxides and oxyhydroxides in soils[J]. Applied Geochemistry, 1994, 9: 279-286.
|
[10] |
DIXIT S, HERING J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science & Technology, 2003, 37: 4182-4189.
|
[11] |
BISSEN M, FRIMMEL F H. Arsenic: a review. Part II: oxidation of arsenic and its removal in water treatment[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31: 97-107.
|
[12] |
AGGETT J, O’BRIEN G A. Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri[J]. Environmental Science & Technology, 1985, 19(3): 231-238.
|
[13] |
CANFIELD D E. Biogeochemistry of sulfur isotopes[J]. Stable Isotope Geochemistry, 2001, 43(1): 607-636.
|
[14] |
WILKIN R T, WALLSCHLAGER D, FORD R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4: 1-7.
|
[15] |
TANG Y, ZHANG M Y, SUN G X, et al. Impact of eutrophication on arsenic cycling in freshwaters[J]. Water Research, 2019, 150: 191-199.
|
[16] |
ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 443-467
|
[17] |
HANDLEY K M, HERY M, LLOYD J R. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis[J]. Environmental Microbiology, 2009, 11(6): 1601-1611.
|
[18] |
TANG X, ZHOU M, FAN C Z, et al. The arsenic chemical species proportion and viral arsenic biotransformation genes composition affects lysogenic phage treatment under arsenic stress[J]. Science of the Total Environment, 2021, 780: 146628.
|
[19] |
STOLZ J E, BASU P, SANTINI J M, et al. Arsenic and selenium in microbial metabolism[J]. Annual Review of Microbiology, 2006, 60: 107-130.
|
[20] |
SLYEMI D, BONNEFOY V. How prokaryotes deal with arsenic[J]. Environmental Microbiology Reports, 2012, 4(6): 571-586.
|
[21] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.
|
[22] |
CULLEN W R, REIMER K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4): 713-764.
|
[23] |
GUO T, LI L G, ZHAI W W, et al. Distribution of arsenic and its biotransformation genes in sediments from the East China Sea[J]. Environmental Pollution, 2019, 253: 949-958.
|
[24] |
肖雄, 龙健, 张润宇, 等. 阿哈水库沉积物-水界面重金属扩散通量[J]. 生态学杂志, 2019, 38(5): 1508-1519.
|
[25] |
沈甲星. 高砷地下水中土著微生物多样性及控制因素: 以内蒙古河套盆地为例[D]. 北京: 中国地质大学(北京), 2017: 17.
|
[26] |
MIRZA B S, SORENSEN D L, DUPONT R R, et al. New arsenate reductase gene(arrA) PCR primers for diversity assessment and quantification in environmental samples[J]. Applied and Environmental Microbiology, 2017, 83(4): e02725-16.
|
[27] |
WU G, JIANG H C, DONG H L, et al. Distribution of arsenite-oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan-Yunnan geothermal zone in Western China[J]. Geomicrobiology Journal, 2015, 32: 482-493.
|
[28] |
BERNER R A. Early diagenesis: a theoretical approach[M]. Princeton: Princeton University Press, 1980: 241.
|
[29] |
DANG D H, TESSIER E, LENOBLE V, et al. Key parameters controlling arsenic dynamics in coastal sediments: an analytical and modeling approach[J]. Marine Chemistry, 2014, 161: 34-46.
|
[30] |
LI Y H, GREGORY S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1974, 38(5): 703-714.
|
[31] |
DUAN L Q, SONG J M, LIANG X M, et al. Dynamics and diagenesis of trace metals in sediments of the Changjiang Estuary[J]. Science of the Total Environment, 2019, 675: 247-259.
|
[32] |
XU L, ZHAO Z, WANG S, et al. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities[J]. Water Research, 2011, 45: 6781-6788.
|
[33] |
SUN Q, DING S, WANG Y, et al. In-situ characterization and assessment of arsenic mobility in lake sediments[J]. Environmental Pollution, 2016, 214: 314-323.
|
[34] |
SMRZKA D, ZWICKER J, BACH W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review[J]. Facies, 2019, 65: 40-47.
|
[35] |
THODE-ANDERSEN S, BO B J. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments[J]. Limnology and Oceanography, 1989, 34(5): 793-806.
|
[36] |
CANFIELD D E, THAMDRUP B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7: 385-392.
|
[37] |
POSTMA D, JAKOBSEN R. Redox zonation: equilibrium constraints on the Fe(Ⅲ)/SO_{4}^{-} reduction interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3169-3175.
|
[38] |
RAISWELL R. A geochemical framework for the application of stable sulphur isotopes to fossil pyritization[J]. Journal of the Geological Society, 1997, 154: 343-356.
|
[39] |
GNANAPRAKASAM E T, LLOYD J R, BOOTHMAN C, et al. Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh[J]. Mbio, 2017, 8: e01326-17.
|
[40] |
FANG T H, CHEN Y S. Arsenic speciation and diffusion flux in Danshuei Estuary sediments, Northern Taiwan[J]. Marine Pollution Bulletin, 2015, 101(1): 98-109.
|
[41] |
钱晓莉, 冯新斌. 贵州草海沉积物-水界面无机汞和甲基汞的扩散通量[J]. 西南大学学报(自然科学版), 2011, 33(3): 104-108.
|