Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 99-114.DOI: 10.13745/j.esf.sf.2022.1.33
Previous Articles Next Articles
SUN Ying1,2,3(), ZHOU Jinlong1,2,3,*(), YANG Fangyuan4, JI Yuanyuan1,2,3,5, ZENG Yanyan1,2,3
Received:
2021-12-01
Revised:
2022-01-14
Online:
2022-05-25
Published:
2022-04-28
Contact:
ZHOU Jinlong
CLC Number:
SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.
区域 | 含水层类型 (井深,样品数) | ρB/(μg·L-1) | ρB/(mg·L-1) | Eh/mV | pH值 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | I | F- | K++Na+ | Ca2+ | Mg2+ | Cl- | | | TDS | TH | | Fe | Mn | |||||||
补给区 | 单一结构潜水 (70300 m, n=20) | 最大值 | 4.0 | 40.0 | 4.13 | 445.36 | 212.89 | 234.62 | 655.43 | 1 036.14 | 317.37 | 2 189.07 | 1 284.49 | 5.10 | 12.69 | 0.36 | 202.00 | 8.69 | ||
最小值 | <1.0 | <10.0 | 0.16 | 26.09 | 26.23 | 6.59 | 14.36 | 53.51 | 97.24 | 198.50 | 111.60 | 0.35 | <0.01 | <0.001 | 69.00 | 7.78 | ||||
均值 | 1.3 | 29.5 | 0.88 | 142.78 | 80.99 | 43.36 | 183.68 | 295.66 | 153.23 | 840.82 | 382.06 | 1.49 | 2.18 | 0.09 | 135.50 | 8.24 | ||||
过渡区 | 单一结构潜水 (15180 m, n=63) 浅层承压水 (2580 m, n=23) 深层承压水 (90130 m, n=11) | 最大值 | 91.2 | 734.0 | 28.31 | 14 160.41 | 385.20 | 760.45 | 14 348.64 | 9 889.67 | 3 954.03 | 41 282.73 | 3 381.10 | 42.15 | 20.52 | 4.11 | 255.00 | 9.51 | ||
最小值 | <1.0 | <10.0 | 0.24 | 28.35 | 20.06 | 6.30 | 25.13 | 19.00 | 36.62 | 209.40 | 119.60 | <0.2 | <0.01 | <0.001 | 18.00 | 6.86 | ||||
均值 | 3.9 | 48.1 | 2.05 | 688.87 | 108.28 | 81.35 | 773.62 | 688.12 | 377.72 | 2 565.35 | 597.96 | 3.60 | 1.09 | 0.13 | 156.85 | 7.96 | ||||
最大值 | 67.6 | 317.0 | 6.78 | 80 124.29 | 810.10 | 4 237.93 | 101 093.12 | 37 310.28 | 1 933.05 | 221 574.89 | 18 963.90 | 11.43 | 6.85 | 0.96 | 111.00 | 8.48 | ||||
最小值 | <1.0 | <10.0 | <0.01 | 74.82 | 21.72 | 24.90 | 90.83 | 124.30 | 69.89 | 388.90 | 156.60 | <0.2 | <0.01 | <0.001 | -46.00 | 6.58 | ||||
均值 | 6.2 | 82.3 | 1.38 | 15 106.05 | 302.82 | 979.98 | 19 187.87 | 8 517.93 | 331.10 | 44 292.45 | 4 790.63 | 3.42 | 1.47 | 0.14 | 39.15 | 7.74 | ||||
最大值 | 5.0 | 40.0 | 1.83 | 423.21 | 172.15 | 190.40 | 553.35 | 1 050.71 | 353.99 | 2 591.80 | 1 213.70 | 5.80 | 0.14 | <0.001 | 225.00 | 8.40 | ||||
最小值 | <1.0 | <10.0 | 0.66 | 121.50 | 25.98 | 3.66 | 91.54 | 177.19 | 121.60 | 522.57 | 108.60 | <0.2 | <0.01 | <0.001 | 106.00 | 7.77 | ||||
均值 | 1.3 | 34.5 | 1.03 | 198.46 | 105.02 | 77.20 | 270.15 | 449.94 | 227.52 | 1 240.66 | 580.02 | 2.60 | 0.04 | <0.001 | 165.50 | 8.12 | ||||
蒸发区 | 单一结构潜水 (7150 m, n=87) 承压水区潜水 (818 m, n=6) 浅层承压水 (2560 m, n=17) 深层承压水 (100110 m, n=6) | 最大值 | 43.0 | 473.0 | 23.23 | 9 625.30 | 702.10 | 1 307.97 | 13 462.92 | 8 913.20 | 1 288.00 | 34 431.90 | 6 549.30 | 25.17 | 33.50 | 6.55 | 253.00 | 10.50 | ||
最小值 | <1.0 | <10.0 | <0.01 | 63.22 | 12.03 | 9.57 | 67.31 | 97.79 | 51.66 | 396.39 | 81.06 | <0.2 | <0.01 | <0.001 | -59.00 | 7.07 | ||||
均值 | 3.1 | 46.4 | 2.15 | 748.30 | 139.58 | 158.16 | 970.73 | 883.09 | 408.82 | 3 132.58 | 999.27 | 2.41 | 1.34 | 0.25 | 142.24 | 7.87 | ||||
最大值 | 35.0 | 70.0 | 16.20 | 5 949.27 | 396.20 | 1 533.06 | 5 668.60 | 6 961.23 | 726.20 | 19 120.29 | 6 762.20 | 1.44 | 13.01 | 1.20 | 168.00 | 8.25 | ||||
最小值 | <1.0 | <10.0 | 0.89 | 832.50 | 79.04 | 175.21 | 1 062.86 | 1 320.13 | 390.61 | 4 578.02 | 1 272.30 | 0.47 | <0.01 | <0.001 | 168.00 | 7.29 | ||||
均值 | 6.7 | 45.0 | 6.38 | 2 245.91 | 232.07 | 574.12 | 2 537.99 | 3 699.41 | 538.23 | 9 587.07 | 2 943.13 | 0.92 | 3.30 | 0.26 | 168.00 | 7.79 | ||||
最大值 | 61.2 | 2 637.0 | 5.40 | 121 075.28 | 1 012.62 | 25 366.14 | 172 922.44 | 54 147.68 | 1 428.15 | 358 694.00 | 106 956.45 | 31.27 | 9.14 | 3.19 | 205.00 | 8.44 | ||||
最小值 | <1.0 | <10.0 | 0.07 | 74.76 | 34.10 | 27.50 | 99.20 | 132.18 | 85.45 | 519.31 | 198.40 | <0.2 | <0.01 | <0.001 | -80.00 | 6.30 | ||||
均值 | 5.8 | 316.6 | 1.17 | 32 599.35 | 327.02 | 3 154.15 | 43 522.74 | 16 078.90 | 309.51 | 95 869.72 | 13 801.64 | 3.70 | 3.10 | 0.47 | -12.90 | 7.58 | ||||
最大值 | <1.0 | 40.0 | 2.80 | 862.60 | 190.00 | 245.60 | 1 094.00 | 1 102.00 | 695.20 | 3 865.00 | 1 486.00 | 3.29 | 1.86 | 0.24 | 186.00 | 8.20 | ||||
最小值 | <1.0 | <10.0 | 1.02 | 222.58 | 51.75 | 34.31 | 311.77 | 211.02 | 106.30 | 959.69 | 270.50 | 0.49 | <0.01 | <0.001 | 53.00 | 7.80 | ||||
均值 | <1.0 | 18.3 | 1.92 | 373.87 | 113.74 | 97.43 | 511.06 | 485.55 | 267.54 | 1 737.95 | 685.23 | 1.28 | 0.45 | 0.06 | 97.25 | 7.98 |
Table 1 Statistics of hydrogeological properties and hydrochemical composition of groundwater in the study area
区域 | 含水层类型 (井深,样品数) | ρB/(μg·L-1) | ρB/(mg·L-1) | Eh/mV | pH值 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | I | F- | K++Na+ | Ca2+ | Mg2+ | Cl- | | | TDS | TH | | Fe | Mn | |||||||
补给区 | 单一结构潜水 (70300 m, n=20) | 最大值 | 4.0 | 40.0 | 4.13 | 445.36 | 212.89 | 234.62 | 655.43 | 1 036.14 | 317.37 | 2 189.07 | 1 284.49 | 5.10 | 12.69 | 0.36 | 202.00 | 8.69 | ||
最小值 | <1.0 | <10.0 | 0.16 | 26.09 | 26.23 | 6.59 | 14.36 | 53.51 | 97.24 | 198.50 | 111.60 | 0.35 | <0.01 | <0.001 | 69.00 | 7.78 | ||||
均值 | 1.3 | 29.5 | 0.88 | 142.78 | 80.99 | 43.36 | 183.68 | 295.66 | 153.23 | 840.82 | 382.06 | 1.49 | 2.18 | 0.09 | 135.50 | 8.24 | ||||
过渡区 | 单一结构潜水 (15180 m, n=63) 浅层承压水 (2580 m, n=23) 深层承压水 (90130 m, n=11) | 最大值 | 91.2 | 734.0 | 28.31 | 14 160.41 | 385.20 | 760.45 | 14 348.64 | 9 889.67 | 3 954.03 | 41 282.73 | 3 381.10 | 42.15 | 20.52 | 4.11 | 255.00 | 9.51 | ||
最小值 | <1.0 | <10.0 | 0.24 | 28.35 | 20.06 | 6.30 | 25.13 | 19.00 | 36.62 | 209.40 | 119.60 | <0.2 | <0.01 | <0.001 | 18.00 | 6.86 | ||||
均值 | 3.9 | 48.1 | 2.05 | 688.87 | 108.28 | 81.35 | 773.62 | 688.12 | 377.72 | 2 565.35 | 597.96 | 3.60 | 1.09 | 0.13 | 156.85 | 7.96 | ||||
最大值 | 67.6 | 317.0 | 6.78 | 80 124.29 | 810.10 | 4 237.93 | 101 093.12 | 37 310.28 | 1 933.05 | 221 574.89 | 18 963.90 | 11.43 | 6.85 | 0.96 | 111.00 | 8.48 | ||||
最小值 | <1.0 | <10.0 | <0.01 | 74.82 | 21.72 | 24.90 | 90.83 | 124.30 | 69.89 | 388.90 | 156.60 | <0.2 | <0.01 | <0.001 | -46.00 | 6.58 | ||||
均值 | 6.2 | 82.3 | 1.38 | 15 106.05 | 302.82 | 979.98 | 19 187.87 | 8 517.93 | 331.10 | 44 292.45 | 4 790.63 | 3.42 | 1.47 | 0.14 | 39.15 | 7.74 | ||||
最大值 | 5.0 | 40.0 | 1.83 | 423.21 | 172.15 | 190.40 | 553.35 | 1 050.71 | 353.99 | 2 591.80 | 1 213.70 | 5.80 | 0.14 | <0.001 | 225.00 | 8.40 | ||||
最小值 | <1.0 | <10.0 | 0.66 | 121.50 | 25.98 | 3.66 | 91.54 | 177.19 | 121.60 | 522.57 | 108.60 | <0.2 | <0.01 | <0.001 | 106.00 | 7.77 | ||||
均值 | 1.3 | 34.5 | 1.03 | 198.46 | 105.02 | 77.20 | 270.15 | 449.94 | 227.52 | 1 240.66 | 580.02 | 2.60 | 0.04 | <0.001 | 165.50 | 8.12 | ||||
蒸发区 | 单一结构潜水 (7150 m, n=87) 承压水区潜水 (818 m, n=6) 浅层承压水 (2560 m, n=17) 深层承压水 (100110 m, n=6) | 最大值 | 43.0 | 473.0 | 23.23 | 9 625.30 | 702.10 | 1 307.97 | 13 462.92 | 8 913.20 | 1 288.00 | 34 431.90 | 6 549.30 | 25.17 | 33.50 | 6.55 | 253.00 | 10.50 | ||
最小值 | <1.0 | <10.0 | <0.01 | 63.22 | 12.03 | 9.57 | 67.31 | 97.79 | 51.66 | 396.39 | 81.06 | <0.2 | <0.01 | <0.001 | -59.00 | 7.07 | ||||
均值 | 3.1 | 46.4 | 2.15 | 748.30 | 139.58 | 158.16 | 970.73 | 883.09 | 408.82 | 3 132.58 | 999.27 | 2.41 | 1.34 | 0.25 | 142.24 | 7.87 | ||||
最大值 | 35.0 | 70.0 | 16.20 | 5 949.27 | 396.20 | 1 533.06 | 5 668.60 | 6 961.23 | 726.20 | 19 120.29 | 6 762.20 | 1.44 | 13.01 | 1.20 | 168.00 | 8.25 | ||||
最小值 | <1.0 | <10.0 | 0.89 | 832.50 | 79.04 | 175.21 | 1 062.86 | 1 320.13 | 390.61 | 4 578.02 | 1 272.30 | 0.47 | <0.01 | <0.001 | 168.00 | 7.29 | ||||
均值 | 6.7 | 45.0 | 6.38 | 2 245.91 | 232.07 | 574.12 | 2 537.99 | 3 699.41 | 538.23 | 9 587.07 | 2 943.13 | 0.92 | 3.30 | 0.26 | 168.00 | 7.79 | ||||
最大值 | 61.2 | 2 637.0 | 5.40 | 121 075.28 | 1 012.62 | 25 366.14 | 172 922.44 | 54 147.68 | 1 428.15 | 358 694.00 | 106 956.45 | 31.27 | 9.14 | 3.19 | 205.00 | 8.44 | ||||
最小值 | <1.0 | <10.0 | 0.07 | 74.76 | 34.10 | 27.50 | 99.20 | 132.18 | 85.45 | 519.31 | 198.40 | <0.2 | <0.01 | <0.001 | -80.00 | 6.30 | ||||
均值 | 5.8 | 316.6 | 1.17 | 32 599.35 | 327.02 | 3 154.15 | 43 522.74 | 16 078.90 | 309.51 | 95 869.72 | 13 801.64 | 3.70 | 3.10 | 0.47 | -12.90 | 7.58 | ||||
最大值 | <1.0 | 40.0 | 2.80 | 862.60 | 190.00 | 245.60 | 1 094.00 | 1 102.00 | 695.20 | 3 865.00 | 1 486.00 | 3.29 | 1.86 | 0.24 | 186.00 | 8.20 | ||||
最小值 | <1.0 | <10.0 | 1.02 | 222.58 | 51.75 | 34.31 | 311.77 | 211.02 | 106.30 | 959.69 | 270.50 | 0.49 | <0.01 | <0.001 | 53.00 | 7.80 | ||||
均值 | <1.0 | 18.3 | 1.92 | 373.87 | 113.74 | 97.43 | 511.06 | 485.55 | 267.54 | 1 737.95 | 685.23 | 1.28 | 0.45 | 0.06 | 97.25 | 7.98 |
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI URL |
[2] |
MORE S, DHAKATE R, RATNALU G V, et al. Hydrogeochemistry and Health Risk Assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District, Telangana State, India[J]. Environmental Earth Sciences, 2021, 80(7): 1-18.
DOI URL |
[3] |
ANDERSSON M, KARUMBUNATHAN V, ZIMMERMANN M B. Global iodine status in 2011 and trends over the past decade[J]. The Journal of Nutrition, 2012, 142(4): 744-750.
DOI URL |
[4] | 郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117. |
[5] | 周殷竹. 基于碳、 铁稳定同位素的高砷地下水生物地球化学研究[D]. 北京: 中国地质大学(北京), 2018. |
[6] | FORDYCE F M. Fluorine: human health risks[M]// Encyclopedia of environmental health. Amsterdam: Elsevier, 2011: 776-785. |
[7] | 栾风娇. 新疆南部典型区地下水中氟的分布特征及富集因素研究[D]. 乌鲁木齐: 新疆农业大学, 2017. |
[8] |
TAYLOR P N, ALBRECHT D, SCHOLZ A, et al. Global epidemiology of hyperthyroidism and hypothyroidism[J]. Nature Reviews Endocrinology, 2018, 14(5): 301-316.
DOI URL |
[9] | 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析: 以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014, 21(4): 66-73. |
[10] |
RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868.
DOI URL |
[11] |
WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933.
DOI URL |
[12] |
VITHANAGE M, BHATTACHARYA P. Fluoride in the environment: sources, distribution and defluoridation[J]. Environmental Chemistry Letters, 2015, 13(2): 131-147.
DOI URL |
[13] | 申红梅, 张树彬, 刘守军, 等. 全国高水碘地区地理分布及高碘地区水碘等值线研究[J]. 中国地方病学杂志, 2007, 26(6): 658-661. |
[14] |
ZHOU Y Z, GUO H M, ZHANG Z, et al. Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2018, 163: 70-79.
DOI URL |
[15] | 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[16] | BERGER T, MATHURIN F A, DRAKE H, et al. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks[J]. Science of the Total Environment, 2016, 569/570: 948-960. |
[17] |
CHAE G T, YUN S T, KWON M J, et al. Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater[J]. Geochemical Journal, 2006, 40(1): 95-102.
DOI URL |
[18] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268. |
[19] |
HOU X L, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196.
DOI URL |
[20] | QIAN K, LI J X, CHI Z Y, et al. Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: impact of irrigation activities[J]. Science of the Total Environment, 2020, 730: 138460. |
[21] |
XUE X B, LI J X, XIE X J, et al. Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain[J]. Science of the Total Environment, 2019, 686: 50-62.
DOI URL |
[22] | LI J X, WANG Y T, XUE X B, et al. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments[J]. Science of the Total Environment, 2020, 745: 140922. |
[23] |
ZHOU J L, LI G M, LIU F, et al. DRAV model and its application in assessing groundwater vulnerability in arid area: a case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China[J]. Environmental Earth Sciences, 2010, 60(5): 1055-1063.
DOI URL |
[24] |
WANG W K, ZHANG Z Y, YIN L H, et al. Topical Collection: groundwater recharge and discharge in arid and semi-arid areas of China[J]. Hydrogeology Journal, 2021, 29(2): 521-524.
DOI URL |
[25] |
LI Q, ZHOU J L, ZHOU Y Z, et al. Variation of groundwater hydrochemical characteristics in the plain area of the Tarim Basin, Xinjiang Region, China[J]. Environmental Earth Sciences, 2014, 72(11): 4249-4263.
DOI URL |
[26] |
ZHOU Y Z, ZENG Y Y, ZHOU J L, et al. Distribution of groundwater arsenic in Xinjiang, P.R. China[J]. Applied Geochemistry, 2017, 77: 116-125.
DOI URL |
[27] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. |
[28] | 陈俊良, 杨红霞, 刘崴, 等. HPLC-ICP-MS法研究内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征[J]. 岩矿测试, 2017, 36(6): 614-623. |
[29] | 陈劲松, 周金龙, 曾妍妍, 等. 新疆阿克苏地区平原区高砷地下水分布特征及富集因素分析[J]. 环境化学, 2021, 40(1): 254-262. |
[30] | 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. |
[31] | SU H, KANG W D, KANG N, et al. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China[J]. Environmental Research, 2021, 200: 111476. |
[32] | 王红太, 周金龙, 曾妍妍, 等. 新疆喀什地区饮用地下水碘分布及其富集因素分析[J]. 新疆农业大学学报, 2019, 42(2): 145-150. |
[33] | FAN W, ZHOU J L, ZHOU Y Z, et al. Factors influencing the distribution of arsenic, fluorine and iodine in shallow groundwater in the oasis zone in the southern margin of the Tarim Basin in Xinjiang, P.R. China[J]. E3S Web of Conferences, 2019, 98: 09006. |
[34] |
TANG L J, HUANG T Z, QIU H J, et al. Fault systems and their mechanisms of the formation and distribution of the Tarim Basin, NW China[J]. Journal of Earth Science, 2014, 25(1): 169-182.
DOI URL |
[35] | 李文鹏, 郝爱兵, 刘振英, 等. 塔里木盆地地下水开发远景区研究[M]. 北京: 地质出版社, 2000. |
[36] | 王彩华. 新疆维吾尔自治区环境地质图集[CM]. 昌吉: 新疆金版印务有限公司, 2005. |
[37] | 张慧, 马英杰, 樊自立, 等. 塔里木河地表及地下水中氟离子的分布和变化规律[J]. 环境科学学报, 2000, 20(5): 579-583. |
[38] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[39] |
LI J X, WANG Y X, XIE X J, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, Northern China[J]. Environmental Science: Processes and Impacts, 2013, 15(4): 848-859.
DOI URL |
[40] |
XUE X B, LI J X, XIE X J, et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain[J]. Water Research, 2019, 159: 480-489.
DOI URL |
[41] | 鲁宗杰, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义[J]. 地球科学, 2017, 42(5): 771-782. |
[42] | 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020. |
[43] | 杨素珍, 郭华明, 唐小惠, 等. 内蒙古河套平原地下水砷异常分布规律研究[J]. 地学前缘, 2008, 15(1): 242-249. |
[44] |
GUO H M, LI Y, ZHAO K, et al. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1847-1854.
DOI URL |
[45] |
KUMAR M, DAS N, GOSWAMI R, et al. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system[J]. Chemosphere, 2016, 164: 657-667.
DOI URL |
[46] |
LI J X, ZHOU H L, QIAN K, et al. Fluoride and iodine enrichment in groundwater of North China Plain: evidences from speciation analysis and geochemical modeling[J]. Science of the Total Environment, 2017, 598: 239-248.
DOI URL |
[47] | 吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018, 25(4): 307-315. |
[48] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-745.
DOI URL |
[49] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI URL |
[50] |
AMIRI V, SOHRABI N, DADGAR M A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat Plain, central Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6163-6176.
DOI URL |
[51] |
HE X D, LI P Y, WU J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812.
DOI URL |
[52] |
LI J X, WANG Y X, XIE X J, et al. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2012, 118: 77-89.
DOI URL |
[53] | 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. |
[54] |
NICKSON R, MCARTHUR J, BURGESS W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395(6700): 338.
DOI URL |
[55] | GAO Z P, JIA Y F, GUO H M, et al. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model[J]. Water Resources Research, 2020, 56(2): e2019WR025492. |
[56] |
GUO H M, LIU C, LU H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: an iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112: 130-145.
DOI URL |
[57] | 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021, 46(6): 1966-1977. |
[58] | 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1986. |
[59] |
HU Q H, ZHAO P H, MORAN J E, et al. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites[J]. Journal of Contaminant Hydrology, 2005, 78(3): 185-205.
DOI URL |
[60] |
SHETAYA W H, YOUNG S D, WATTS M J, et al. Iodine dynamics in soils[J]. Geochimica et Cosmochimica Acta, 2012, 77: 457-473.
DOI URL |
[61] |
PI K F, WANG Y X, XIE X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, Northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661.
DOI URL |
[1] | ZHANG Yuting, DUAN Liqin, SONG Jinming, ZHANG Naixing, YIN Meiling, LI Xuegang, YUAN Huamao. Arsenic migration and transformation mechanism and microbial regulation at the sediment-water interface of the Changjiang estuary [J]. Earth Science Frontiers, 2022, 29(4): 144-155. |
[2] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[3] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[4] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[5] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[6] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[7] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[8] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[9] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[10] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[11] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[12] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[13] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[14] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[15] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||