Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 227-237.DOI: 10.13745/j.esf.sf.2020.5.40
Special Issue: Research Articles (English)
Previous Articles Next Articles
Jinru Lin1,2, Ning Chen1,3, Yuanming Pan1,*()
Received:
2020-03-21
Revised:
2020-05-19
Online:
2020-09-25
Published:
2020-09-25
Contact:
Yuanming Pan
CLC Number:
Jinru Lin, Ning Chen, Yuanming Pan. Uptake mechanisms of arsenate in gypsum: Structural incorporation versus surface adsorption and implications for remediation of arsenic contamination[J]. Earth Science Frontiers, 2020, 27(5): 227-237.
Minerals | g1 | g2 | g3 | A1 (mT) | A2 (mT) | A3 (mT) | References |
---|---|---|---|---|---|---|---|
[AsO3]2- | |||||||
calcite | 2.00162(5) | 2.00195(5) | 2.00195(5) | 93.73(1) | 75.25(1) | 75.25(1) | 1 |
danburite | 2.00539(3) | 2.00258(4) | 2.00103(3) | 85.85(1) | 67.92(1) | 67.51(1) | 2 |
gypsum | 2.00134(3) | 2.00371(5) | 2.00537(4) | 69.65(1) | 53.26(1) | 53.12(1) | 3 |
haidingerite(Ⅰ) | 1.999 | 1.999 | 1.999 | 85.2 | 67.3 | 67.3 | 4 |
haidingerite(Ⅱ) | 1.998 | 1.993 | 1.993 | 94.0 | 75.6 | 75.6 | 4 |
newberyite | 2.00533(5) | 2.00124(5) | 2.00029(5) | 80.537(6) | 63.982(9) | 63.695(7) | 5 |
struvite (Ⅰ) | 2.00431(4) | 2.00399(4) | 2.00154(2) | 72.950(6) | 56.581(5) | 56.576(5) | 6 |
struvite (Ⅱ) | 2.00467(6) | 2.00298(7) | 2.00122(6) | 76.457(9) | 60.210(9) | 60.059(9) | 6 |
struvite(Ⅲ) | 2.00419(7) | 2.0034(1) | 2.00161(5) | 74.620(6) | 58.271(9) | 58.172(9) | 6 |
struvite(Ⅳ) | 2.00349(6) | 2.00322(6) | 2.00110(6) | 79.976(9) | 62.975(6) | 62.937(7) | 6 |
struvite(Ⅴ) | 2.00330(8) | 2.00287(9) | 2.00104(8) | 84.771(9) | 67.64(1) | 67.62(1) | 6 |
[AsO2]2- | |||||||
calcite | 1.9910 | 1.9991 | 2.0150 | 21.9 | -5.4 | -6.2 | 7 |
danburite(Ⅰ) | 1.97127(3) | 1.99539(4) | 1.99827(3) | 26.15(1) | -9.79(1) | -10.70(1) | 2 |
danburite(Ⅱ) | 1.97169(4) | 1.99250(2) | 1.99806(3) | 26.54(1) | -10.93(1) | -11.63(1) | 2 |
gypsum | 1.9958(1) | 1.99962(2) | 2.01484(2) | 16.97(1) | -7.53(1) | -7.95(2) | 3 |
newberyite | 1.9978(3) | 1.9981(1) | 2.0078(4) | 20.98(1) | -7.13(6) | -9.12(4) | 5 |
Minerals | g1 | g2 | g3 | A1 (mT) | A2 (mT) | A3 (mT) | References |
---|---|---|---|---|---|---|---|
[AsO3]2- | |||||||
calcite | 2.00162(5) | 2.00195(5) | 2.00195(5) | 93.73(1) | 75.25(1) | 75.25(1) | 1 |
danburite | 2.00539(3) | 2.00258(4) | 2.00103(3) | 85.85(1) | 67.92(1) | 67.51(1) | 2 |
gypsum | 2.00134(3) | 2.00371(5) | 2.00537(4) | 69.65(1) | 53.26(1) | 53.12(1) | 3 |
haidingerite(Ⅰ) | 1.999 | 1.999 | 1.999 | 85.2 | 67.3 | 67.3 | 4 |
haidingerite(Ⅱ) | 1.998 | 1.993 | 1.993 | 94.0 | 75.6 | 75.6 | 4 |
newberyite | 2.00533(5) | 2.00124(5) | 2.00029(5) | 80.537(6) | 63.982(9) | 63.695(7) | 5 |
struvite (Ⅰ) | 2.00431(4) | 2.00399(4) | 2.00154(2) | 72.950(6) | 56.581(5) | 56.576(5) | 6 |
struvite (Ⅱ) | 2.00467(6) | 2.00298(7) | 2.00122(6) | 76.457(9) | 60.210(9) | 60.059(9) | 6 |
struvite(Ⅲ) | 2.00419(7) | 2.0034(1) | 2.00161(5) | 74.620(6) | 58.271(9) | 58.172(9) | 6 |
struvite(Ⅳ) | 2.00349(6) | 2.00322(6) | 2.00110(6) | 79.976(9) | 62.975(6) | 62.937(7) | 6 |
struvite(Ⅴ) | 2.00330(8) | 2.00287(9) | 2.00104(8) | 84.771(9) | 67.64(1) | 67.62(1) | 6 |
[AsO2]2- | |||||||
calcite | 1.9910 | 1.9991 | 2.0150 | 21.9 | -5.4 | -6.2 | 7 |
danburite(Ⅰ) | 1.97127(3) | 1.99539(4) | 1.99827(3) | 26.15(1) | -9.79(1) | -10.70(1) | 2 |
danburite(Ⅱ) | 1.97169(4) | 1.99250(2) | 1.99806(3) | 26.54(1) | -10.93(1) | -11.63(1) | 2 |
gypsum | 1.9958(1) | 1.99962(2) | 2.01484(2) | 16.97(1) | -7.53(1) | -7.95(2) | 3 |
newberyite | 1.9978(3) | 1.9981(1) | 2.0078(4) | 20.98(1) | -7.13(6) | -9.12(4) | 5 |
[1] |
ABDEL-MONEM A A, ABDEL-RAZEK Y A, HASSAN G M, et al., 2010. ESR studies and dating of Egyptian gypsum at Ras Mala’ab, Sinai, Egypt[J]. Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 165(1):39-45.
DOI URL |
[2] |
ALP I, DEVECI H, SUMGUN Y H, et al., 2009. Leachable characteristics of arsenical borogypsum wastes and their potential use in cement production[J]. Environmental Science & Technology, 43(18):6939-6943.
DOI URL |
[3] |
AYDAŞ C, ENGIN B, AYDIN T, 2011. Radiation-induced signals of gypsum crystals analysed by ESR and TL techniques applied to dating[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(4):417-424.
DOI URL |
[4] | BLAKLEY R L, HENRY D D, MORGAN W T, et al., 2001. Quantitative electron paramagnetic resonance: the importance of matching the Q-Factor of standards and samples[J]. Applied Spectroscopy, 55(10):1375-1381. |
[5] | BOTHE J V, BROWN P W, 1999. Arsenic immobilization by calcium arsenate formation[J]. Environmental Science & Technology, 33(21):3806-3811. |
[6] |
COMODI P, ZANAZZI P F, NAZZARENI S, et al., 2008. High-pressure behavior of gypsum: a single-crystal X-ray study[J]. American Mineralogist, 93(10):1530-1537.
DOI URL |
[7] |
DELFINI M, FERRINI M, MANNI A, et al., 2003. Arsenic leaching by Na2S to decontaminate tailings coming from colemanite processing[J]. Minerals Engineering, 16(1):45-50.
DOI URL |
[8] |
DONAHUE R, HENDRY M J, 2003. Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada[J]. Applied Geochemistry, 18(11):1733-1750.
DOI URL |
[9] |
DRAHOTA P, FILIPPI M, 2009. Secondary arsenic minerals in the environment: a review[J]. Environment International, 35(8):1243-1255.
DOI URL |
[10] | DYREK K, ROKOSZ A, MADEJ A, et al., 1996. Quantitative EPR studies of transition metal ions in oxide, aluminosilicate and polymer matrices[J]. Applied Magnetic Resonance, 10(1):319-338. |
[11] |
FERNANDEZ-MARTINEZ A, CUELLO G J, JOHSON M R, et al., 2008. Arsenate incorporation in gypsum probed by neutron, X-ray scattering and density functional theory modeling[J]. The Journal of Physical Chemistry A, 112(23):5159-5166.
DOI URL |
[12] | FERNANDEZ-MARTINEZ A, ROMAN-ROSS G, CUELLO G J, et al., 2006. Arsenic uptake by gypsum and calcite: modelling and probing by neutron and X-ray scattering[J]. Physica B: Condensed Matter, 385/386:935-937. |
[13] |
GILINSKAYA L G, AFANAS’EVA V I, 1981. Two forms of the As O 3 2 - radical in γ-irradiated heidingerite CaHAsO4·H2O[J]. Journal of Structural Chemistry, 22(4):640-642.
DOI URL |
[14] |
IKEDA S, IKEYA M, 1992. Electron spin resonance (ESR) signals in natural and synthetic gypsum: an application of ESR to the age estimation of gypsum precipitates from the San Andreas Fault[J]. Japanese Journal of Applied Physics, 31(2):L136-L138.
DOI URL |
[15] | IKEYA M, 1993. New applications of electron spin resonance. Dating, dosimetry and microscopy[M]. Singapore: World Scientific. |
[16] |
JAMIESON H E, 2011. Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact[J]. Elements, 7(6):381-386.
DOI URL |
[17] | KASUYA M, BRUMBY S, CHAPPELL J, 1991. ESR signals from natural gypsum single crystals: implications for ESR dating[J]. Nuclear Tracks and Radiation Measurements, 18(3):329-333. |
[18] |
KHASANOVA N M, KHASANOV R A, NIZAMUTDINOV N M, et al., 2015. Morphology and radiation-induced centres of technogenic gypsum[J]. Procedia Earth and Planetary Science, 15:579-584.
DOI URL |
[19] | LIN J, CHEN N, NILGES M J, et al., 2013a. Arsenic speciation in synthetic gypsum (CaSO4·2H2O): a synchrotron XAS, single-crystal EPR, and pulsed ENDOR study[J]. Geochimica et Cosmochimica Acta, 106:524-540. |
[20] | LIN J, CHEN N, PAN Y, 2013b. Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study[J]. Environmental Science & Technology, 47(22):12728-12735. |
[21] | LIN J, CHEN N, PAN Y, 2014. Arsenic speciation in newberyite (MgHPO4·3H2O) determined by synchrotron X-ray absorption and electron paramagnetic resonance spectroscopies: implications for the fate of arsenic in green fertilizers[J]. Environmental Science & Technology, 48(12):6938-6946. |
[22] |
LIN J, MAO M, CHEN N, et al., 2011. Arsenic incorporation in colemanite from borate deposits: data from ICP-MS, μ-SXRF, XAFS and EPR analyses[J]. Canadian Mineralogist, 49(3):809-822.
DOI URL |
[23] |
LIN J, NILGES M J, WIENS E, et al., 2019. Mechanism of Gd3+ uptake in gypsum (CaSO4·2H2O): implications for EPR dating, REE recovery and REE behavior[J]. Geochimica et Cosmochimica Acta, 258:63-78.
DOI URL |
[24] |
LIN J, SUN W, DESMARAIS J, et al., 2018. Uptake and speciation of uranium in synthetic gypsum (CaSO4·2H2O): applications to radioactive mine tailings[J]. Journal of Environmental Radioactivity, 181:8-17.
DOI URL |
[25] | LI R, LIN J, NILGES M J, et al., 2014. Arsenic speciation in danburite (CaB2Si2O8): a synchrotron XAS and single-crystal EPR study[J]. European Journal of Mineralogy, 26(1):113-125. |
[26] | MAHAN S, KAY J, 2012. Building on previous OSL dating techniques for gypsum: a case study from Salt Basin playa, New Mexico and Texas[J]. Quaternary Geochronology, 10:345-352. |
[27] |
MARSHALL S A, SERWAY R A, 1969. Electron spin resonance absorption spectrum of the As O 2 2 - molecule-ion in γ irradiated single-crystal calcite[J]. Journal of Chemical Physics, 50(1):435-439.
DOI URL |
[28] | MATHEW G, RAO G, SOHONI P, et al., 2004. ESR dating of interfault gypsum from Katrol hill range, Kachchh, Gujarat: implications for neotectonism[J]. Current Science, 87(9):1269-1274. |
[29] |
MISTRY R, THOMPSON J W, BOREHAM D R, et al., 2011. Single-aliquot EPR dosimetry of wallboard (drywall)[J]. Radiation Protection Dosimetry, 147(4):512-516.
DOI URL |
[30] | PAN Y, 2013. Arsenic speciation in rock-forming minerals determined by EPR spectroscopy[C]// MASSOTI A. Arsenic sources, environmental impact, toxicity and human health: a medical perspective. New York: Nova Science Publishers Inc: 39-52. |
[31] |
PAN Y, CHEN N, WEIL J, et al., 2002. Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part III. Structural characterization of sub-ppm-level Gd and Mn in minerals at W-band frequency[J]. American Mineralogist, 87:1333-1341.
DOI URL |
[32] |
PAN Y, NILGES M J, 2014. Electron paramagnetic resonance spectroscopy: basic principles, experimental techniques and applications to earth and planetary sciences[J]. Reviews in Mineralogy and Geochemistry, 78(1):655-690.
DOI URL |
[33] |
PODDER J, LIN J, SUN W, et al., 2017. Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations[J]. Geochimica et Cosmochimica Acta, 198:218-228.
DOI URL |
[34] |
RODRÍGUEZ J D, JIMÉNEZ A, PRIETO M, 2007. Oriented overgrowth of pharmacolite (CaHAsO4·2H2O) on gypsum (CaSO4·2H2O)[J]. Crystal Growth and Design, 7(12):2756-2763.
DOI URL |
[35] |
RODRÍGUEZ J D, JIMÉNEZ A, PRIETO M, et al., 2008. Interaction of gypsum with As(V)-bearing aqueous solutions: surface precipitation of guerinite, sainfeldite, and Ca2NaH(AsO4)2·6H2O, a synthetic arsenate[J]. American Mineralogist, 93(5/6):928-939.
DOI URL |
[36] | ROMAN-ROSS G, CHARLET L, CUELLO G J. et al., 2003. Arsenic removal by gypsum and calcite in lacustrine environments[J]. Journal De Physique, IV: JP, 107(2):1153-1156. |
[37] | SASLO J, BUGAJ A, STRZELCZAK G, et al., 2015. Multifrequency EPR study on radiation induced centers in calcium carbonates labeled with 13C[J]. Nukleonika, 60(3):429-434. |
[38] |
SERWAY R A, MARSHALL S A, 1966. Electron spin resonanceabsorption spectrum of the As O 3 2 - molecule ion in γ-irradiated single-crystal calcite[J]. The Journal of Chemical Physics, 45(6):2309-2314.
DOI URL |
[39] | SHAW S A, HENDRY M J, ESSILFIE-DUGHAN J, et al., 2011. Distribution, characterization, and geochemical controls of elements of concern in uranium mine tailings, Key Lake, Saskatchewan, Canada[J]. Applied Geochemistry, 26(12):2044-2056. |
[40] |
TANJI K K, 1969. Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 M and at 25 ℃[J]. Environmental Science & Technology, 3(7):656-661.
DOI URL |
[41] | TAYIBI H, CHOURA M, LÓPEZ F A, et al., 2009. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 90(8):2377-2386. |
[42] |
THOMPSON J W, ATIYA I A, RINK W J, et al., 2009. Potential use of wallboard (drywall) for EPR retrospective dosimetry[J]. Radiation Measurements, 44(3):243-248.
DOI URL |
[43] |
ULUSOY Ü, 2004. ESR studies of anatolian gypsum[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(6):1359-1365.
DOI URL |
[44] | WANG S, ZHANG D, MA X, et al., 2017. Spectroscopic and DFT study on the species and local structure of arsenate incorporated in gypsum lattice[J]. Chemical Geology, 460:46-53. |
[45] |
WOLLMANN G, VOIGT W, 2008. Solubility of gypsum in MSO4 solutions (M=Mg, Mn, Co, Ni, Cu, Zn) at 298.15 K and 313.15 K[J]. Journal of Chemical & Engineering Data, 53(6):1375-1380.
DOI URL |
[46] |
ZHANG D, YUAN Z, WANG S, et al., 2015. Incorporation of arsenic into gypsum: relevant to arsenic removal and immobilization process in hydrometallurgical industry[J]. Journal of Hazardous Materials, 300:272-280.
DOI URL |
[1] | MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata [J]. Earth Science Frontiers, 2023, 30(6): 1-13. |
[2] | BAO Hongping, WANG Qianping, YAN Wei, CAI Zhenghong, ZHENG Jie, WEI Liubin, HUANG Zhengliang, GUO Wei. Sedimentary characteristics and gas accumulation potential of the Ordovician carbonate-evaporite paragenesis system in central and eastern Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 30-44. |
[3] | GUAN Shuwei, LIANG Han, JIANG Hua, FU Xiaodong, GU Mingfeng, LEI Ming, CHEN Tao, YANG Rongjun. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures [J]. Earth Science Frontiers, 2022, 29(6): 252-264. |
[4] | HE Mingqian, HUANG Wenhui, JIU Bo. Origin and evolution of gypsum dolomite as a favorable reservoir in the Ordos Basin, China [J]. Earth Science Frontiers, 2021, 28(4): 327-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||