Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 238-246.DOI: 10.13745/j.esf.sf.2020.5.38
Previous Articles Next Articles
LIAN Bin1(), XIAO Bo2, XIAO Leilei3, WANG Weiying4, SUN Qibiao5
Received:
2020-03-30
Revised:
2020-04-21
Online:
2020-09-25
Published:
2020-09-25
CLC Number:
LIAN Bin, XIAO Bo, XIAO Leilei, WANG Weiying, SUN Qibiao. Molecular mechanism and carbon sink effects of microbial transformation in potassium-bearing rocks[J]. Earth Science Frontiers, 2020, 27(5): 238-246.
Fig.2 Functional prediction and classification of differentially expressed gene products in Aspergillus fumigatus weathering silicate minerals. Modified after [29].
Fig.4 Schematic diagram illustrating the roles of carbonic anhydrases CanA and CanB in the Aspergillus nidulans metabolic processes. Modified after [46].
[1] | 马鸿文, 苏双青, 刘浩, 等. 中国钾资源与钾盐工业可持续发展[J]. 地学前缘, 2010, 17:294-310. |
[2] | 连宾. 硅酸盐细菌的解钾作用研究[M]. 贵阳: 贵州科技出版社, 1998. |
[3] | 李元芳. 硅酸盐细菌肥料的特性和作用[J]. 土壤肥料, 1994, 2:48-49. |
[4] | WOFSY S C. Climate change: where has all the carbon gone?[J]. Science, 2001, 292:2261-2263. |
[5] |
FINLAY R D, WALLANDER H, SMITS M, et al. The role of fungi in biogenic weathering in boreal forest soils[J]. Fungal Biology Review, 2009, 23:101-106.
DOI URL |
[6] | 谢树成, 殷鸿福. 地球生物学前沿: 进展与问题[J]. 中国科学: 地球科学, 2014, 44:1072-1086. |
[7] | 董海良, 于炳松, 吕国. 地质微生物学中几项最新研究进展[J]. 地质论评, 2009, 55:552-580. |
[8] |
BARKER W, WELCH S, CHU S, et al. Experimental observations of the effects of bacteria on alumino silicate weathering[J]. American Mineralogist, 1998, 83:1551-1563.
DOI URL |
[9] | 李凤汀, 郝正然, 杨则瑗, 等. 硅酸盐细菌HM8841菌株解钾作用的研究[J]. 微生物学报, 1997, 37:79-81. |
[10] | SUGUMARAN P, JANARTHANAM B. Solubilization of potassium containing minerals by bacteria and their effect on plant growth[J]. World Journal of Agricultural Sciences, 2007, 3:350-355. |
[11] | 张朝轩, 杨天仪, 骆军, 等. 微生物钾肥对土壤理化性状和葡萄光合作用及果实品质的影响[J]上海农业学报, 2010, 26:70-73. |
[12] | HU X F, LI S X, WU J G, et al. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov[J]. International Journal of Systematic & Evolutionary Microbiology, 2010, 60(2):8-14. |
[13] | 殷永娴, 李冬梅. 一株钾细菌性状与功能的研究[J]. 南京农业大学学报, 1995, 18(增刊):62-63. |
[14] | 薛智勇, 汤江武, 钱红, 等. 硅酸盐细菌在不同土壤中的解钾作用及对甘薯的增产效果[J]. 中国土壤与肥料, 1996, 2:23-26. |
[15] | 连宾, 张永玲, 刘昌梅, 等. 硅酸盐细菌的初步研究与应用[M]//葛诚. 微生物肥料的生产应用及其发展. 北京: 中国农业科技出版社, 1996: 166-168. |
[16] | 盛下放, 黄为一, 殷永娴. 硅酸盐菌剂的应用效果及其解钾作用的初步研究[J]. 南京农业大学学报, 2000, 23:43-46. |
[17] | 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报, 2002, 39:863-871. |
[18] | 席琳乔, 宋爱民, 龚明福, 等. 棉花根际硅酸盐细菌解钾机理的初步研究[J]. 西北农业学报, 2009, 18:309-314. |
[19] | 赵飞, 黄智, 何琳燕, 等. 不同风化程度钾长石表面矿物分解细菌的筛选及遗传多样性[J]. 微生物学报, 2010, 50:647-653. |
[20] | 连宾. 硅酸盐细菌GY92对伊利石的释钾作用[J]. 矿物学报, 1998, 18:234-238. |
[21] | 连宾, 傅平秋, 莫德明, 等. 硅酸盐细菌解钾作用机理的综合效应[J]. 矿物学报, 2002, 22:179-183. |
[22] | 杜叶, 周雪莹, 连宾. 胶质芽孢杆菌的胞外分泌物与细菌的解钾作用[J]. 地学前缘, 2008, 15:107-111. |
[23] | 周雪莹, 李辉, 连宾. 胶质芽孢杆菌胞外多糖在肥料矿物分解转化中的作用[J]. 矿物岩石地球化学通报, 2010, 29:63-66. |
[24] | 胡星, 连宾, 郁建平, 等. 含钾矿粉对胶质芽孢杆菌分泌胞外多糖的影响[J]. 高校地质学报, 2011, 17:107-111. |
[25] | LIAN B, WANG B, PAN M, et al. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus[J]. Geochimica et Cosmochimica Acta, 2008, 72:87-98. |
[26] | 莫彬彬, 连宾. 长石风化作用及影响因素分析[J]. 地学前缘, 2010, 17:281-289. |
[27] | 胡婕, 连宾, 郁建平, 等. 黑曲霉-矿物集合体的形成与多糖研究[J]. 微生物学报, 2011, 51:756-765. |
[28] | XIAO B, LIAN B, SHAO W. Do bacterial secreted proteins play a role in the weathering of potassium-bearing rock powder?[J]. Geomicrobiology Journal, 2012, 29:497-505. |
[29] | XIAO B, LIAN B, SUN L, et al. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus[J]. Chemical Geology, 2012,306-307:1-9. |
[30] |
WANG W, LIAN B, PAN L. An RNA-sequencing study of the genes and metabolic pathways involved in Aspergillus niger weathering of potassium feldspar[J]. Geomicrobiology Journal, 2015, 32:689-700.
DOI URL |
[31] | WANG W, SUN Q, LIAN B. Redox of fungal multicopper oxidase: a potential driving factor for the silicate mineral weathering[J]. Geomicrobiology Journal, 2018, 35:879-886. |
[32] |
KIRTZEL J, UEBERSCHAAR N, DECKERT-GAUDIG T, et al. Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete Schizophyllum commune[J]. Environmental Microbiology, 2020, 22(4):1535-1546.
DOI URL |
[33] |
MAO H, FERGUSON T S, CIBULSKY S M, et al. MONaKA, a novel modulator of the plasma membrane Na, K-ATPase[J]. The Journal of Neuroscience, 2005, 25:7934-7943.
DOI URL |
[34] | 孙晶晶, 余诚峰, 付紫玉, 等. 过表达Na, K-ATPase基因增强了黑曲霉对硅灰石的风化能力[J]. 微生物学报, 2019, 59:1164-1173. |
[35] | FINLAY R D, MAHMOOD S, ROSENSTOCK N, et al. Biological weathering and its consequences at different spatial levels: from nanoscale to global scale[J]. Biogeosciences, 2020, 17:1507-1533. |
[36] | STEIDINGER B S, CROWTHER T W, LIANG J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses[J]. Nature, 2019, 569:404-408. |
[37] | BONNEVILLE S, MORGAN D J, SCHMALENBERGER A, et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface[J]. Geochimica et Cosmochimica Acta, 2011, 75:6988-7005. |
[38] |
BONNEVILLE S, BRAY A W, BENNING L G. Structural Fe(II) oxidation in biotite by an ectomycorrhizal fungi drives mechanical forcing[J]. Environmental Science & Technology, 2016, 50:5589-5596.
DOI URL |
[39] | SUN Q, FU Z, FINLAY R D, et al. Transcriptome analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather K-containing feldspar and apatite[J]. Applied & Environmental Microbiology, 2019, 85:e00719-19. |
[40] |
SUN Q, LI J, FINLAY R D, et al. Oxalotrophic bacterial assemblages in the ectomycorrhizosphere of forest trees and their effects on oxalate degradation and carbon fixation potential[J]. Chemical Geology, 2019, 514:54-64.
DOI URL |
[41] |
SUN Q, LIU X, WANG S, et al. Ectomycorrhizal fungi select specific bacterial communities in different mineral-filled mesh bags[J]. Science of the Total Environment, 2020, 721:137663.
DOI URL |
[42] | PERRIN A S, PROBST A, PROBST J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72:3105-3123. |
[43] |
SHUKLA T, SUNDRIYAL S, STACHNIK L, et al. Carbonate and silicate weathering in glacial environments and its relation to atmospheric CO2 cycling in the Himalaya[J]. Annals of Glaciology, 2018, 59:159-170.
DOI URL |
[44] | XIAO L, LIAN B, HAO J, et al. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values[J]. Scientific Reports, 2015, 5:7733. |
[45] |
XIAO L, LIAN B, DONG C, et al. The selective expression of carbonic anhydrase genes of Aspergillus nidulans in response to changes in mineral nutrition and CO2 concentration[J]. Microbiology Open, 2016, 5:60-69.
DOI URL |
[46] | SUN Q, LIAN B. The different roles of Aspergillus nidulans carbonic anhydrases in wollastonite weathering accompanied by carbonation[J]. Geochimica et Cosmochimica Acta, 2019, 244:437-450. |
[47] | BOSE H, SATYANARAYANA T. Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives[J]. Front Microbiol, 2017, 8:1615. |
[48] | BHAGAT C, DUDHAGARA P, TANK S. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS[J]. Journal of Applied Microbiology, 2018, 124(2):316-335. |
[49] |
XIAO L, SUN Q, YUAN H, et al. A practical soil management to improve soil quality by applying mineral organic fertilizer[J]. Acta Geochimica, 2017, 36:198-204.
DOI URL |
[50] |
SUN Q, RUAN Y, CHEN P, et al. Effects of mineral-organic fertilizer on the biomass of green Chinese cabbage and potential carbon sequestration ability in karst areas of Southwest China[J]. Acta Geochimica, 2019, 38:430-439.
DOI URL |
[51] |
CHEN P, RUAN Y L, WANG S J, et al. Effects of organic mineral fertiliser on heavy metal migration and potential carbon sink in soils in a karst region[J]. Acta Geochimica, 2017, 36:539-543.
DOI URL |
[52] | 连宾, 陈烨, 朱立军, 等. 微生物对碳酸盐岩的风化作用[J]. 地学前缘, 2008, 15(6):90-99. |
[53] | 连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1):52-56. |
[54] | LI M, LI Q, YUN J J, et al. Bio-organic-mineral fertilizer can improve soil quality and promote the growth and quality of water spinach[J]. Canadian Journal of Soil Science, 2017, 97:552-560. |
[55] |
YANG Y, SHAMEER S, MAO S, et al. Bioorganic-mineral fertilizer can remediate chemical fertilizer-oversupplied soil: purslane planting as an example[J]. Journal of Soil Science and Plant Nutrition, 2020. DOI: 10.1007/s42729-020-00175-4.
DOI |
[56] |
HAQUE F, SANTOS R M, DUTTA A, et al. Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth[J]. ACS Omega, 2019, 4(1):1425-1433.
DOI URL |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | SUN Caiyun, ZHENG Bingqing, LI Jun, FU Hongming, SUN Rongqing, LIU Honghao, LIAO Zuying, JIANG Hongsheng, WU Zhenbin, XIA Shibin, WANG Pei. Study on the effect of submerged plants on the stability of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 430-439. |
[3] | LI Liang, JIANG Zhiwei, WU Bingjin, WEI Dongwen, WANG Wenhai. Influence of lead and zinc on geological carbon sink under oxygen-rich conditions [J]. Earth Science Frontiers, 2024, 31(5): 421-429. |
[4] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
[5] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[6] | XIE Lijun, BAI Zhongke, YANG Boyu, CHEN Meijing, FU Shuai, MAO Yanchao. Carbon sequestration assessment methods at home and abroad for terrestrial ecosystems: Research progress in achieving carbon neutrality [J]. Earth Science Frontiers, 2023, 30(2): 447-462. |
[7] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[8] | . Changes of soil carbon pool in typical areas of Changjiang drainage basin and its influencing factors. [J]. Earth Science Frontiers, 2015, 22(6): 241-250. |
[9] | LUO Fu-Liang, YUAN Dao-Xian, CHEN Gao. Chen Hao. Corrosion of limestone in farmland ecosystems and its carbon sink effect in the karst area of Southwest China:A case study in Sanquan Town, Nanchuan City, Chongqing Municipality. [J]. Earth Science Frontiers, 2011, 18(6): 64-71. |
[10] | MO Ban-Ban, LIAN Bin. Study on feldspar weathering and analysis of relevant impact factors. [J]. Earth Science Frontiers, 2010, 17(3): 281-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||