Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 421-429.DOI: 10.13745/j.esf.sf.2024.2.12
Previous Articles Next Articles
LI Liang1,2(), JIANG Zhiwei1,2,*(), WU Bingjin1,2, WEI Dongwen1,2, WANG Wenhai1,2
Received:
2023-10-30
Revised:
2024-01-27
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
LI Liang, JIANG Zhiwei, WU Bingjin, WEI Dongwen, WANG Wenhai. Influence of lead and zinc on geological carbon sink under oxygen-rich conditions[J]. Earth Science Frontiers, 2024, 31(5): 421-429.
Fig.3 The relationship between HCO 3 - concentration and time of rock samples in deionized water (a: With lead-zinc ore powder; b: Without lead-zinc ore powder)
Fig.5 Microscopic model of Pb2+ adsorption on the surface of limestone. Adapted from [13]. (1: on the surface; 2: on the step; 3: kink; 4: within the step; 5: within the cavity)
时间 | 不同浓度Pb溶液各岩样组的 | |||||
---|---|---|---|---|---|---|
灰岩+矿0.1 mg/L | 角岩+矿0.1 mg/L | 灰+角+矿0.1 mg/L | 灰岩+矿0.5 mg/L | 角岩+矿0.5 mg/L | 灰+角+矿0.5 mg/L | |
第2天 | 9.58 | 20.44 | 39.05 | 45.76 | 48.81 | 58.27 |
第8天 | 14.94 | 32.95 | 49.42 | 61.02 | 75.05 | 106.17 |
第14天 | 21.35 | 44.84 | 62.54 | 78.71 | 103.73 | 125.70 |
时间 | 不同浓度Pb溶液各岩样组的 | |||||
灰岩0.1 mg/L | 角岩0.1 mg/L | 灰+角0.1 mg/L | 灰岩0.5 mg/L | 角岩0.5 mg/L | 灰+角0.5 mg/L | |
第2天 | 34.04 | 38.71 | 61.80 | 0 | 34.69 | 33.61 |
第8天 | 53.13 | 64.16 | 58.55 | 41.20 | 47.71 | 54.21 |
第14天 | 75.91 | 83.74 | 78.08 | 57.47 | 88.91 | 78.07 |
Table 1 Dissolution of HCO 3 - in ore-bearing and non-ore-bearing rock samples in different concentrations of Pb solution
时间 | 不同浓度Pb溶液各岩样组的 | |||||
---|---|---|---|---|---|---|
灰岩+矿0.1 mg/L | 角岩+矿0.1 mg/L | 灰+角+矿0.1 mg/L | 灰岩+矿0.5 mg/L | 角岩+矿0.5 mg/L | 灰+角+矿0.5 mg/L | |
第2天 | 9.58 | 20.44 | 39.05 | 45.76 | 48.81 | 58.27 |
第8天 | 14.94 | 32.95 | 49.42 | 61.02 | 75.05 | 106.17 |
第14天 | 21.35 | 44.84 | 62.54 | 78.71 | 103.73 | 125.70 |
时间 | 不同浓度Pb溶液各岩样组的 | |||||
灰岩0.1 mg/L | 角岩0.1 mg/L | 灰+角0.1 mg/L | 灰岩0.5 mg/L | 角岩0.5 mg/L | 灰+角0.5 mg/L | |
第2天 | 34.04 | 38.71 | 61.80 | 0 | 34.69 | 33.61 |
第8天 | 53.13 | 64.16 | 58.55 | 41.20 | 47.71 | 54.21 |
第14天 | 75.91 | 83.74 | 78.08 | 57.47 | 88.91 | 78.07 |
时间 | 不同浓度Zn溶液各岩样组的 | |||||
---|---|---|---|---|---|---|
灰岩+矿1 mg/L | 角岩+矿1 mg/L | 灰+角+矿1 mg/L | 灰岩+矿5 mg/L | 角岩+矿5 mg/L | 灰+角+矿5 mg/L | |
第2天 | 68.34 | 76.88 | 88.47 | 97.63 | 110.44 | 118.37 |
第8天 | 120.51 | 137.60 | 155.29 | 176.34 | 190.38 | 212.95 |
第14天 | 145.53 | 166.27 | 188.55 | 207.16 | 227.29 | 248.96 |
时间 | 不同浓度Zn溶液各岩样组的 | |||||
灰岩1 mg/L | 角岩1 mg/L | 灰+角1 mg/L | 灰岩5 mg/L | 角岩5 mg/L | 灰+角5 mg/L | |
第2天 | 36.86 | 30.36 | 41.23 | 32.53 | 45.54 | 28.19 |
第8天 | 50.96 | 60.72 | 62.94 | 74.82 | 49.87 | 80.24 |
第14天 | 70.48 | 148.98 | 79.22 | 66.14 | 71.56 | 76.99 |
Table 2 Dissolution of HCO 3 - in ore-bearing and non-ore-bearing rock samples in different concentrations of Zn solution
时间 | 不同浓度Zn溶液各岩样组的 | |||||
---|---|---|---|---|---|---|
灰岩+矿1 mg/L | 角岩+矿1 mg/L | 灰+角+矿1 mg/L | 灰岩+矿5 mg/L | 角岩+矿5 mg/L | 灰+角+矿5 mg/L | |
第2天 | 68.34 | 76.88 | 88.47 | 97.63 | 110.44 | 118.37 |
第8天 | 120.51 | 137.60 | 155.29 | 176.34 | 190.38 | 212.95 |
第14天 | 145.53 | 166.27 | 188.55 | 207.16 | 227.29 | 248.96 |
时间 | 不同浓度Zn溶液各岩样组的 | |||||
灰岩1 mg/L | 角岩1 mg/L | 灰+角1 mg/L | 灰岩5 mg/L | 角岩5 mg/L | 灰+角5 mg/L | |
第2天 | 36.86 | 30.36 | 41.23 | 32.53 | 45.54 | 28.19 |
第8天 | 50.96 | 60.72 | 62.94 | 74.82 | 49.87 | 80.24 |
第14天 | 70.48 | 148.98 | 79.22 | 66.14 | 71.56 | 76.99 |
[1] | TANG J, TANG X X, QIN Y M, et al. Karst rocky desertification progress: soil calcium as a possible driving force[J]. Science of the Total Environment, 2019, 649: 1250-1259. |
[2] | 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414. |
[3] | 覃政教, 林玉石, 袁道先, 等. 西南岩溶区矿山与水污染问题探讨及建议[J]. 地球学报, 2012, 33(3): 341-348. |
[4] | WANG H, ZHANG H, TANG H Y, et al. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China[J]. Environmental Earth Sciences, 2021, 80(7): 293. |
[5] | QU S Y, WU W H, NEL W, et al. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China[J]. Science of the Total Environment, 2020, 708: 134572. |
[6] | 蒋忠诚. 中国南方表层岩溶系统的碳循环及其生态效应[J]. 第四纪研究, 2000, 20(4): 316. |
[7] | 王建成, 徐志明. 浅谈目前我国矿山地质环境问题与对策建议[J]. 中国新技术新产品, 2012(19): 117. |
[8] | 杨士海, 王西平. 河南省矿山地质环境问题治理对策研究[J]. 中国国土资源经济, 2013, 26(10): 11-14. |
[9] | 傅伯杰, 刘国华, 欧阳志云. 中国生态区划研究[M]. 北京: 科学出版社, 2013. |
[10] | 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21): 7921-7930. |
[11] | 周家云, 李发斌, 朱创业. 四川省待复垦矿山分类及复垦对策研究[J]. 金属矿山, 2005(8): 63-66. |
[12] | 李亮, 曹建华, 黄芬, 等. 铅锌矿开采对河流水环境及地质碳汇的影响[J]. 矿业研究与开发, 2013, 33(3): 89-92. |
[13] | LI L, WU B J, GUAN T Y, et al. Divalent lead in aqueous solution changes the surface morphology of dolomite and inhibits dissolution[J]. Water, 2022, 14(19): 2979. |
[14] | 华磊. 采矿活动对地质碳汇的影响: 以铅锌矿开采为例[J]. 水利科技与经济, 2013, 19(5): 1-4. |
[15] | 吕小溪, 颜翔琦, 胡晨鹏. 喀斯特关键带的地质碳汇及其影响因素研究进展[J]. 河北民族师范学院学报, 2020, 40(4): 107-115. |
[16] | ASTILLEROS J M, FERNÁNDEZ-DÍAZ L, PUTNIS A. The role of magnesium in the growth of calcite: an AFM study[J]. Chemical Geology, 2010, 271(1/2): 52-58. |
[17] | STURCHIO N C, CHIARELLO R P, CHENG L, et al. Lead adsorption at the calcite-water interface: synchrotron X-ray standing wave and X-ray reflectivity studies[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 251-263. |
[18] |
GODELITSAS A, ASTILLEROS J M, HALLAM K, et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science and Technology, 2003, 37(15): 3351-3360.
PMID |
[19] |
ROUFF A A, ELZINGA E J, REEDER R J, et al. The effect of aging and pH on Pb(II) sorption processes at the calcite-water interface[J]. Environmental Science and Technology, 2006, 40(6): 1792-1798.
PMID |
[20] | HENRY T H, LIANG Z. Surface Behavior of Calcite upon Uptake of Cd2+ and Pb2+[J]. Geological Journal of China Universities, 2012, 18(2): 193. |
[21] | JURINAK J J, BAUER N. Thermodynamics of zinc adsorption on calcite, dolomite and magnesite-type minerals[J]. Soil Science Society of America Journal, 1956, 20(4): 466-471. |
[22] | VALLEE B L, 汤立达. 锌的生物化学、生理学、毒理学及临床病理学[J]. 微量元素, 1988(3): 57-59. |
[23] | LIU Z H. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink[J]. Acta Geologica Sinica - English Edition, 2001, 75(3): 275-278. |
[24] | PUTNIS A, PUTNIS C V. The mechanism of reequilibration of solids in the presence of a fluid phase[J]. Journal of Solid State Chemistry, 2007, 180(5): 1783-1786. |
[25] | PUTNIS A. 3. Mineral replacement reactions[M]//Thermodynamics and kinetics of Water-Rock Interaction. Chantilly, VA: De Gruyter, 2009: 87-124. |
[26] | HARLOV D E, WIRTH R, FÖRSTER H J. An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite[J]. Contributions to Mineralogy and Petrology, 2005, 150(3): 268-286. |
[27] | SEYDOUX-GUILLAUME A M, MONTEL J M, BINGEN B, et al. Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers[J]. Chemical Geology, 2012, 330: 140-158. |
[28] | TENAILLEAU C, PRING A, ETSCHMANN B, et al. Transformation of pentlandite to violarite under mild hydrothermal conditions[J]. American Mineralogist, 2006, 91(4): 706-709. |
[29] | ZHAO J, BRUGGER J, GRUNDLER P V, et al. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: calaverite to metallic gold[J]. American Mineralogist, 2009, 94(11/12): 1541-1555. |
[1] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[2] | WANG Kunyi, ZHOU Yongzhang. Machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, Guangdong, China [J]. Earth Science Frontiers, 2024, 31(4): 47-57. |
[3] | DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 31-41. |
[4] | DONG Xin, HU Haoran, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin. A Meta-analysis of the distribution characteristics and ecological risk of heavy metals in mining areas [J]. Earth Science Frontiers, 2024, 31(2): 93-102. |
[5] | WEI Hongbin, LUO Ming, ZHANG Shiwen, ZHOU Pengfei. Effects of different remediation treatments on heavy metals and microorganisms in mining wasteland [J]. Earth Science Frontiers, 2023, 30(5): 541-552. |
[6] | WANG Luofeng, WANG Gongwen, XU Wenhui, XU Senmin, HE Yaqing, WANG Chunyi, YANG Tao, ZHOU Xiaojiang, HUANG Leilei, ZUO Ling, MOU Nini, CAO Yi, LIU Zhifei, CHANG Yulin. Intelligent geoscience information mining and knowledge discovery using big data analytics: A case study of the Shangfanggou Mo (Fe) mine in Henan Province [J]. Earth Science Frontiers, 2023, 30(4): 317-334. |
[7] | FENG Jun, ZHANG Qi, LUO Jianmin. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas [J]. Earth Science Frontiers, 2022, 29(4): 403-411. |
[8] | WU Qiang, CUI Fangpeng, XIONG Chen, HUANG Yinzhou, SUN Chen. Classification and characterization of China national territorial spaces [J]. Earth Science Frontiers, 2021, 28(6): 256-262. |
[9] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[10] | WANG Chunguang, LIU Junxing, GENG Hao, JIA Han, YIN Xianyang, CHI Haoxuan. Water quality analysis and pollution evaluation of the main rivers in the Tongling mining area [J]. Earth Science Frontiers, 2021, 28(4): 175-183. |
[11] | CHENG Jiyuan, BAI Zhongke, YANG Boyu, ZHANG Jianan. Visual evaluation of land reclamation aesthetics: An example of the Loess Plateau mining area [J]. Earth Science Frontiers, 2021, 28(4): 165-174. |
[12] | JIA Han, LIU Junxing, YIN Xianyang, WANG Chunguang, GENG Hao, CHI Haoxuan, TANG Shijie. Ecological evaluation of the Tongling pyrite mining district in Anhui Province [J]. Earth Science Frontiers, 2021, 28(4): 131-141. |
[13] | YUAN Tao, NI Xuan, ZHOU Wei. Spatio-temporal impact and the scope of vegetation disturbance from coal mining: A case of the Ningdong mining district [J]. Earth Science Frontiers, 2021, 28(4): 110-117. |
[14] | YANG Jinzhong, XU Wenjia, YAO Weiling, SUN Yaqin. Land destroyed by mining in China: Damage distribution, rehabilitation status and existing problems [J]. Earth Science Frontiers, 2021, 28(4): 83-89. |
[15] | LIU Yanhui, YANG Xiaoyu, BAO Nisha, GU Xiaowei. Estimating biomass of reclaimed vegetation in prairie mining area: Inversion method based on Worldview-3 and Sentinel-1 SAR data [J]. Earth Science Frontiers, 2021, 28(4): 219-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||