Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 31-41.DOI: 10.13745/j.esf.sf.2023.11.46
Previous Articles Next Articles
DING Xiang2(), YUAN Bei1,3, DU Ping1,*(
), LIU Hupeng1,3, ZHANG Yunhui1, CHEN Juan1
Received:
2023-10-08
Revised:
2023-11-02
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment[J]. Earth Science Frontiers, 2024, 31(2): 31-41.
参数性质项 | 各参数具体特征 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
名称 | 暴露频率 (EF) | 皮肤黏 附系数 (AF) | 体重 (BW) | 颗粒物 释放因子 (PEF) | 暴露期 (ED) | 土壤颗粒 摄入速率 (IngR) | 土壤颗粒 吸入速率 (InhR) | 平均暴 露时间 (Atca) | 皮肤暴露 表面积 (SA) | 皮肤吸 收因子 (ABF) | |
单位 | d/a | mg/(cm2·d) | kg | m3/kg | a | mg/d | m3/d | d | m2 | ||
分布 | 三角 | 对数正态 | 正态 | 单点 | 均匀 | 三角 | 对数正态 | 单点 | 单点 | 单点 | |
取值 | 成人 | TRI (180, 345, 365) | LN (0.49, 0.54) | N (57.03, 1.18) | 1.36E+09 | UN (0, 24) | TRI (4, 30, 52) | LN (16.57, 4.05) | 2 190 | 0.49 | 0.001 |
儿童 | LN (0.65, 1.20) | N (16.68, 1.48) | 1.36E+09 | UN (0, 6) | TRI (66, 103, 161) | LN (7.19, 1.62) | 9 125 | 0.23 | 0.001 | ||
数据来源文献 | [ | [ | [ | [ | [ | [ | [ | [ | [ | [ |
Table 1 The meanings and values of probabilistic risk assessment model parameters
参数性质项 | 各参数具体特征 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
名称 | 暴露频率 (EF) | 皮肤黏 附系数 (AF) | 体重 (BW) | 颗粒物 释放因子 (PEF) | 暴露期 (ED) | 土壤颗粒 摄入速率 (IngR) | 土壤颗粒 吸入速率 (InhR) | 平均暴 露时间 (Atca) | 皮肤暴露 表面积 (SA) | 皮肤吸 收因子 (ABF) | |
单位 | d/a | mg/(cm2·d) | kg | m3/kg | a | mg/d | m3/d | d | m2 | ||
分布 | 三角 | 对数正态 | 正态 | 单点 | 均匀 | 三角 | 对数正态 | 单点 | 单点 | 单点 | |
取值 | 成人 | TRI (180, 345, 365) | LN (0.49, 0.54) | N (57.03, 1.18) | 1.36E+09 | UN (0, 24) | TRI (4, 30, 52) | LN (16.57, 4.05) | 2 190 | 0.49 | 0.001 |
儿童 | LN (0.65, 1.20) | N (16.68, 1.48) | 1.36E+09 | UN (0, 6) | TRI (66, 103, 161) | LN (7.19, 1.62) | 9 125 | 0.23 | 0.001 | ||
数据来源文献 | [ | [ | [ | [ | [ | [ | [ | [ | [ | [ |
重金属元素 | RfD/(mg·kg-1·d-1) | SF/(kg·d·mg-1) | |||||
---|---|---|---|---|---|---|---|
RfDing | RfDder | RfDinh | SFing | SFder | SFinh | ||
As | 3.00×10-4 | 1.23×10-4 | 3.01×10-4 | 1.50×100 | 3.66×100 | 1.51×101 | |
Cd | 1.00×10-3 | 1.00×10-5 | 1.00×10-5 | 5.01×10-1 | 2.00×101 | 6.30×100 | |
Cr | 3.00×10-3 | 1.23×10-4 | 2.86×10-5 | 8.50×10-3 | 4.20×101 | ||
Cu | 4.00×10-2 | 1.20×10-2 | 4.02×10-2 | ||||
Ni | 2.00×10-2 | 5.40×10-3 | 2.06×10-2 | 8.4×10-1 | |||
Pb | 3.50×10-3 | 5.25×10-4 | 3.52×10-3 | 8.50×10-3 | |||
Zn | 3.00×10-1 | 6.00×10-2 | 6.00×10-2 | ||||
Hg | 3.00×10-4 | 2.10×10-5 | 8.57×10-5 |
Table 2 The values of heavy metal toxicity parameters. Adapted from [27⇓-29].
重金属元素 | RfD/(mg·kg-1·d-1) | SF/(kg·d·mg-1) | |||||
---|---|---|---|---|---|---|---|
RfDing | RfDder | RfDinh | SFing | SFder | SFinh | ||
As | 3.00×10-4 | 1.23×10-4 | 3.01×10-4 | 1.50×100 | 3.66×100 | 1.51×101 | |
Cd | 1.00×10-3 | 1.00×10-5 | 1.00×10-5 | 5.01×10-1 | 2.00×101 | 6.30×100 | |
Cr | 3.00×10-3 | 1.23×10-4 | 2.86×10-5 | 8.50×10-3 | 4.20×101 | ||
Cu | 4.00×10-2 | 1.20×10-2 | 4.02×10-2 | ||||
Ni | 2.00×10-2 | 5.40×10-3 | 2.06×10-2 | 8.4×10-1 | |||
Pb | 3.50×10-3 | 5.25×10-4 | 3.52×10-3 | 8.50×10-3 | |||
Zn | 3.00×10-1 | 6.00×10-2 | 6.00×10-2 | ||||
Hg | 3.00×10-4 | 2.10×10-5 | 8.57×10-5 |
重金属元素 | 土壤各重金属元素含量间的相关系数 | |||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Ni | Pb | Zn | Hg | |
As | 1 | 0.465*** | 0.416*** | 0.597*** | 0.354*** | 0.395*** | 0.338*** | 0.210*** |
Cd | 1 | 0.196** | 0.446*** | 0.415* | 0.612*** | 0.407*** | 0.244*** | |
Cr | 1 | 0.604*** | 0.913*** | 0.065 | 0.307*** | 0.192** | ||
Cu | 1 | 0.621*** | 0.407*** | 0.584*** | 0.258*** | |||
Ni | 1 | 0.020 | 0.411*** | 0.135* | ||||
Pb | 1 | 0.318*** | 0.242*** | |||||
Zn | 1 | 0.287*** | ||||||
Hg | 1 |
Table 3 Results of the correlation analysis of heavy metals in the study area
重金属元素 | 土壤各重金属元素含量间的相关系数 | |||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Ni | Pb | Zn | Hg | |
As | 1 | 0.465*** | 0.416*** | 0.597*** | 0.354*** | 0.395*** | 0.338*** | 0.210*** |
Cd | 1 | 0.196** | 0.446*** | 0.415* | 0.612*** | 0.407*** | 0.244*** | |
Cr | 1 | 0.604*** | 0.913*** | 0.065 | 0.307*** | 0.192** | ||
Cu | 1 | 0.621*** | 0.407*** | 0.584*** | 0.258*** | |||
Ni | 1 | 0.020 | 0.411*** | 0.135* | ||||
Pb | 1 | 0.318*** | 0.242*** | |||||
Zn | 1 | 0.287*** | ||||||
Hg | 1 |
重金属元素 | 分布函数 | 分布函数关键参数/(mg·kg-1) | |
---|---|---|---|
均值 | 标准差 | ||
As | 对数正态 | 12.48 | 11.52 |
Cd | 对数正态 | 0.53 | 0.41 |
Cr | 对数正态 | 68.69 | 29.39 |
Cu | 对数正态 | 51.11 | 35.89 |
Ni | 对数正态 | 33.05 | 14.14 |
Pb | 对数正态 | 55.66 | 30.85 |
Zn | 对数正态 | 120.51 | 45.23 |
Hg | 对数正态 | 0.16 | 0.15 |
Table 4 Fitting distribution function of soil heavy metal concentration by MCS
重金属元素 | 分布函数 | 分布函数关键参数/(mg·kg-1) | |
---|---|---|---|
均值 | 标准差 | ||
As | 对数正态 | 12.48 | 11.52 |
Cd | 对数正态 | 0.53 | 0.41 |
Cr | 对数正态 | 68.69 | 29.39 |
Cu | 对数正态 | 51.11 | 35.89 |
Ni | 对数正态 | 33.05 | 14.14 |
Pb | 对数正态 | 55.66 | 30.85 |
Zn | 对数正态 | 120.51 | 45.23 |
Hg | 对数正态 | 0.16 | 0.15 |
[1] | ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759. |
[2] | GILLER K E, WITTER E, MCGRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biology and Biochemistry, 1998, 30(10/11): 1389-1414. |
[3] | ZERIZGHI T, GUO Q J, TIAN L Y, et al. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area[J]. Science of the Total Environment, 2022, 814: 152653. |
[4] | WANG Y T, GUO G H, ZHANG D G, et al. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis[J]. Environmental Pollution, 2021, 276: 116666. |
[5] | WANG J Y, CAI Y, YANG J, et al. Research trends and frontiers on source appointment of soil heavy metal: a scientometric review (2000-2020)[J]. Environmental Science and Pollution Research, 2021, 28(38): 52764-52779. |
[6] | 廖晓勇, 陈同斌, 武斌, 等. 典型矿业城市的土壤重金属分布特征与复合污染评价: 以“镍都” 金昌市为例[J]. 地理研究, 2006, 25(5): 843-852. |
[7] | ALI H, KHAN E, ILAHI I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019, 2019: 6730305. |
[8] | LI Z Y, MA Z W, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853. |
[9] | 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238. |
[10] | US Environmental Protection Agency. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide[EB/OL]. (2023-04-05) [2023-11-10]. https://www.epa.gov/sites/default/files/2015-02/documents/pmf_5.0_user_guide.pdf. |
[11] | ANAMAN R, PENG C, JIANG Z C, et al. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF[J]. Science of the Total Environment, 2022, 823: 153759. |
[12] | 李军, 李旭, 李开明, 等. 黄河流域农田土壤重金属污染特征及其优先控制源分析[J]. 环境科学, 2024, 45(3): 1724-1738. |
[13] | XIAO L, GUAN D S, CHEN Y J, et al. Distribution and availability of heavy metals in soils near electroplating factories[J]. Environmental Science and Pollution Research, 2019, 26(22): 22596-22610. |
[14] | 潘泳兴, 陈盟, 王櫹橦. 典型铅锌矿流域土壤重金属累积与分布的影响因素分析[J]. 环境科学, 2023, 44(11): 6071-6084. |
[15] | US Environmental Protection Agency. Risk assessment guidance for superfund: Volume III: Part A, process for conducting probabilistic risk assessment[R]. Washington: Office of Emergency and Remedial Response, US Environmental Protection Agency, 2001. |
[16] | DONG Z M, LIU Y J, DUAN L C, et al. Uncertainties in human health risk assessment of environmental contaminants: a review and perspective[J]. Environment International, 2015, 85: 120-132. |
[17] | 杨湜烟, 刘杏梅, 徐建明. 土壤重金属污染健康风险评估新视角: 概率风险评估的源起及展望[J]. 土壤学报, 2022, 59(1): 28-37. |
[18] | QU C S, SUN K, WANG S R, et al. Monte Carlo simulation-based health risk assessment of heavy metal soil pollution: a case study in the Qixia mining area, China[J]. Human and Ecological Risk Assessment, 2012, 18(4): 733-750. |
[19] | YUAN B, CAO H L, DU P, et al. Source-oriented probabilistic health risk assessment of soil potentially toxic elements in a typical mining city[J]. Journal of Hazardous Materials, 2023, 443: 130222. |
[20] | 国家环境保护总局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境出版社, 2004. |
[21] | MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2: 108-118. |
[22] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[23] | 黄剑波, 姜登登, 温冰, 等. 基于蒙特卡罗模拟的铅锌冶炼厂周边农田土壤重金属健康风险评估[J]. 环境科学, 2023, 44(4): 2204-2214. |
[24] | US Environmental Protection Agency. The exposure factors handbook (2011 Edition)[EB/OL]. (2011-10-03)[2023-11-10]. https://www.epa.gov/expobox/about-exposure-factors-handbook. |
[25] | SUN J X, ZHAO M L, HUANG J L, et al. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 2022, 423: 127116. |
[26] | 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019. |
[27] | SUN R G, GAO Y, YANG Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil[J]. Chemosphere, 2022, 291: 132792. |
[28] | LEI M, LI K, GUO G H, et al. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation[J]. Science of the Total Environment, 2022, 817: 152899. |
[29] | US Environmental Protection Agency. Regional Screening Levels (RSLs)[EB/OL]. (2023-11-07)[2023-11-10]. https://www.epa.gov/risk/regional-screening-levels-rsls. |
[30] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[31] | 生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. |
[32] | 范拴喜, 甘卓亭, 李美娟, 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010, 26(17): 310-315. |
[33] | 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价: 基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. |
[34] | HAN Y M, DU P X, CAO J J, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, central China[J]. Science of the Total Environment, 2006, 355(1/2/3): 176-186. |
[35] | 刘楠, 唐莹影, 陈盟, 等. 基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J]. 中国环境科学, 2023, 43(3): 1267-1276. |
[36] | RODRÍGUEZ L, RUIZ E, ALONSO-AZCÁRATE J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management, 2009, 90(2): 1106-1116. |
[37] | 储彬彬, 罗立强, 王晓芳, 等. 南京栖霞山铅锌矿区铅同位素示踪[J]. 地球学报, 2012, 33(2): 209-215. |
[38] | LIU Y B, CUI J, PENG Y, et al. Atmospheric deposition of hazardous elements and its accumulation in both soil and grain of winter wheat in a lead-zinc smelter contaminated area, central China[J]. Science of the Total Environment, 2020, 707: 135789. |
[39] | 毛景文, 张建东, 郭春丽. 斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型: 一个新的矿床模型: 以德兴地区为例[J]. 地球科学与环境学报, 2010, 32(1): 1-14. |
[40] | YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. |
[41] | 德兴市自然资源局. 德兴市矿产资源总体规划(2021—2025年)[EB/OL].(2021-10-21)[2023-11-10]. http://www.dxs.gov.cn/dxszrzyj/dx2qovr7/202110/8f0e17e1e2d24f538c3366b472b9557d.shtml. |
[42] | 戴前进, 冯新斌, 唐桂萍. 土壤汞的地球化学行为及其污染的防治对策[J]. 地质地球化学, 2002, 30(4): 75-79. |
[43] | WU Y, WANG S X, STREETS D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science and Technology, 2006, 40(17): 5312-5318. |
[44] | 李军, 肖应龙, 李宁, 等. 江西德兴金山金矿富金矿体地质特征研究[J]. 中国金属通报, 2018(9): 36-37, 39. |
[45] | 李娇, 滕彦国, 吴劲, 等. 基于PMF模型及地统计法的乐安河中上游地区土壤重金属来源解析[J]. 环境科学研究, 2019, 32(6): 984-992. |
[46] | HU J J, LIN B J, YUAN M Y, et al. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China[J]. Environmental Geochemistry and Health, 2019, 41(2): 967-980. |
[47] | NI S Q, LIU G N, ZHAO Y Y, et al. Distribution and source apportionment of heavy metals in soil around Dexingcopper mine in Jiangxi Province, China[J]. Sustainability, 2023, 15(2): 1143. |
[48] | CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019, 650: 725-733. |
[1] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[2] | TU Chunlin, HE Chengzhong, MA Yiqi, YIN Linhu, TAO Lanchu, YANG Minghua. Pollution Characteristics, Ecological risk and source apportionment of heavy metals in sediments of the Pearl River Basin [J]. Earth Science Frontiers, 2024, 31(3): 410-419. |
[3] | NING Wenjing, XIE Xianming, YAN Liping. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results [J]. Earth Science Frontiers, 2023, 30(4): 470-484. |
[4] | CAO Wei, ZHANG Lei, QIN Yanwen, CHI Minghui, ZHAO Yanmin, YANG Chenchen, SHI Yao. Spatial distribution characteristics and risk assessment of heavy metals in surface sediments in Lake Yunmeng [J]. Earth Science Frontiers, 2021, 28(5): 448-455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||