Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 317-334.DOI: 10.13745/j.esf.sf.2022.2.85
Previous Articles Next Articles
WANG Luofeng1(), WANG Gongwen2,3,4,*(
), XU Wenhui1, XU Senmin1, HE Yaqing1, WANG Chunyi1, YANG Tao1, ZHOU Xiaojiang1, HUANG Leilei2, ZUO Ling2, MOU Nini2, CAO Yi2, LIU Zhifei2, CHANG Yulin2
Received:
2022-06-13
Revised:
2022-06-30
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
WANG Luofeng, WANG Gongwen, XU Wenhui, XU Senmin, HE Yaqing, WANG Chunyi, YANG Tao, ZHOU Xiaojiang, HUANG Leilei, ZUO Ling, MOU Nini, CAO Yi, LIU Zhifei, CHANG Yulin. Intelligent geoscience information mining and knowledge discovery using big data analytics: A case study of the Shangfanggou Mo (Fe) mine in Henan Province[J]. Earth Science Frontiers, 2023, 30(4): 317-334.
Fig.1 Simplified geological maps showing the location of the study area (a, adapted from [11]), location of the Shangfanggou Mo (Fe) mine (b, adapted from [11]), and tectono-geological setting of the Shangfanggou deposit (c, modified after [11-12])
Fig.3 3D surface images of minding areas (upper panel) ), UAV captured image of the study area showing distribution of sampling points (RTK positioning with cm resolution), and ore specimen (lower panel)
Fig.4 (A) 3D mineral content modeling of ore standard samples for lithofacies classification based on 108 borehole databases, (B) sampling locations of rock/ore standard samples and layer samples in the study area, and (C) short-wave infrared stope location map.
Fig.7 3D control of geological bodies at the 5G+ control room, Shangfanggou mine, Luoyang Luanchuan Molybdenum Mining Co., Ltd., showing oxidized Mo ore (main ore body) (yellow), 2021 mined (blasted) ore block (blue), wall-rock (gray), and 3D multivariate information model of sampling points
编号 | 各主成分矿物TIR(热红外)光谱分析结果 | w(Fe)/% | w(Mo)/% | w(W)/10-6 | |||||
---|---|---|---|---|---|---|---|---|---|
第一主成分 | 含量 | 第二主成分 | 含量 | 第三主成分 | 含量 | ||||
02-11-1 | 石英 | 0.631 | 白云石 | 0.369 | 4.019 8 | 0.075 2 | 75 | ||
02-11-2 | 石英 | 0.658 | 蛇纹石 | 0.342 | 3.737 5 | 0.101 6 | 67 | ||
02-11-3 | 石英 | 0.622 | 蛇纹石 | 0.378 | 4.412 4 | 0.120 4 | 106 | ||
02-12-1 | 绿脱石 | 0.397 | 石英 | 0.319 | 微斜长石 | 0.284 | 4.579 4 | 0.141 9 | 73 |
02-12-2 | 绿脱石 | 0.422 | 石英 | 0.300 | 微斜长石 | 0.278 | 4.171 5 | 0.124 2 | 91 |
02-12-3 | 绿脱石 | 0.462 | 石英 | 0.291 | 微斜长石 | 0.247 | 5.220 6 | 0.139 8 | 117 |
02-13-1 | 绿脱石 | 0.462 | 石英 | 0.275 | 微斜长石 | 0.262 | 5.013 5 | 0.119 3 | 89 |
02-13-2 | 绿脱石 | 0.409 | 石英 | 0.308 | 微斜长石 | 0.283 | 4.734 5 | 0.130 7 | 82 |
02-14-1 | 拉长石 | 0.361 | 石英 | 0.339 | 滑石 | 0.3 | 4.237 8 | 0.094 7 | 76 |
02-14-3 | 绿脱石 | 0.382 | 石英 | 0.339 | 微斜长石 | 0.279 | 4.039 0 | 0.112 3 | 88 |
02-14-2 | 绿脱石 | 0.406 | 石英 | 0.308 | 微斜长石 | 0.287 | 6.733 2 | 0.133 0 | 113 |
02-15-1 | 绿脱石 | 0.373 | 石英 | 0.332 | 微斜长石 | 0.294 | 6.733 2 | 0.133 0 | 113 |
02-15-2 | 石英 | 0.573 | 蛇纹石 | 0.427 | 6.733 2 | 0.133 0 | 113 | ||
03-31-1 | 绿脱石 | 0.569 | 蛇纹石 | 0.261 | 石英 | 0.17 | 9.198 9 | 0.129 6 | 99 |
03-31-2 | 滑石 | 0.459 | 角闪石 | 0.294 | 钠钙长石 | 0.248 | 10.623 5 | 0.124 4 | 140 |
03-31-3 | 滑石 | 0.355 | 角闪石 | 0.349 | 拉长石 | 0.297 | 10.623 5 | 0.124 4 | 140 |
04-01-1 | 滑石 | 0.484 | 角闪石 | 0.355 | 石英 | 0.161 | 10.724 8 | 0.127 6 | 137 |
04-01-2 | 滑石 | 0.424 | 角闪石 | 0.423 | 石英 | 0.153 | 10.557 7 | 0.125 8 | 117 |
04-01-3 | 滑石 | 0.519 | 角闪石 | 0.306 | 石英 | 0.175 | 10.129 6 | 0.134 0 | 124 |
04-02-1 | 滑石 | 0.463 | 角闪石 | 0.332 | 钠钙长石 | 0.204 | 11.473 4 | 0.130 1 | 121 |
Table 1 Mineral composition (by TIR, XRF) dataset (part) of rock/ore powder samples from Shangfanggou deposit
编号 | 各主成分矿物TIR(热红外)光谱分析结果 | w(Fe)/% | w(Mo)/% | w(W)/10-6 | |||||
---|---|---|---|---|---|---|---|---|---|
第一主成分 | 含量 | 第二主成分 | 含量 | 第三主成分 | 含量 | ||||
02-11-1 | 石英 | 0.631 | 白云石 | 0.369 | 4.019 8 | 0.075 2 | 75 | ||
02-11-2 | 石英 | 0.658 | 蛇纹石 | 0.342 | 3.737 5 | 0.101 6 | 67 | ||
02-11-3 | 石英 | 0.622 | 蛇纹石 | 0.378 | 4.412 4 | 0.120 4 | 106 | ||
02-12-1 | 绿脱石 | 0.397 | 石英 | 0.319 | 微斜长石 | 0.284 | 4.579 4 | 0.141 9 | 73 |
02-12-2 | 绿脱石 | 0.422 | 石英 | 0.300 | 微斜长石 | 0.278 | 4.171 5 | 0.124 2 | 91 |
02-12-3 | 绿脱石 | 0.462 | 石英 | 0.291 | 微斜长石 | 0.247 | 5.220 6 | 0.139 8 | 117 |
02-13-1 | 绿脱石 | 0.462 | 石英 | 0.275 | 微斜长石 | 0.262 | 5.013 5 | 0.119 3 | 89 |
02-13-2 | 绿脱石 | 0.409 | 石英 | 0.308 | 微斜长石 | 0.283 | 4.734 5 | 0.130 7 | 82 |
02-14-1 | 拉长石 | 0.361 | 石英 | 0.339 | 滑石 | 0.3 | 4.237 8 | 0.094 7 | 76 |
02-14-3 | 绿脱石 | 0.382 | 石英 | 0.339 | 微斜长石 | 0.279 | 4.039 0 | 0.112 3 | 88 |
02-14-2 | 绿脱石 | 0.406 | 石英 | 0.308 | 微斜长石 | 0.287 | 6.733 2 | 0.133 0 | 113 |
02-15-1 | 绿脱石 | 0.373 | 石英 | 0.332 | 微斜长石 | 0.294 | 6.733 2 | 0.133 0 | 113 |
02-15-2 | 石英 | 0.573 | 蛇纹石 | 0.427 | 6.733 2 | 0.133 0 | 113 | ||
03-31-1 | 绿脱石 | 0.569 | 蛇纹石 | 0.261 | 石英 | 0.17 | 9.198 9 | 0.129 6 | 99 |
03-31-2 | 滑石 | 0.459 | 角闪石 | 0.294 | 钠钙长石 | 0.248 | 10.623 5 | 0.124 4 | 140 |
03-31-3 | 滑石 | 0.355 | 角闪石 | 0.349 | 拉长石 | 0.297 | 10.623 5 | 0.124 4 | 140 |
04-01-1 | 滑石 | 0.484 | 角闪石 | 0.355 | 石英 | 0.161 | 10.724 8 | 0.127 6 | 137 |
04-01-2 | 滑石 | 0.424 | 角闪石 | 0.423 | 石英 | 0.153 | 10.557 7 | 0.125 8 | 117 |
04-01-3 | 滑石 | 0.519 | 角闪石 | 0.306 | 石英 | 0.175 | 10.129 6 | 0.134 0 | 124 |
04-02-1 | 滑石 | 0.463 | 角闪石 | 0.332 | 钠钙长石 | 0.204 | 11.473 4 | 0.130 1 | 121 |
Fig.11 Geological information mining and decision making process based on ore processing result for high-talc, medium-oxidation, high-Fe, high-Mo ore from the Shangfanggou deposit
Fig.12 Knowledge discovery-based 3D geological models of the Fe-rich section (left) and phlogopite-bearing skarn (right) in the mining area showing their associative relationship
Fig.14 Hazard-level distribution model of altered minerals based on mineral alteration status and information on mining, mineral processing and harmful minerals
[1] |
YANG L. Industry 4.0: a survey on technologies, applications and open research issues[J]. Journal of Industrial Information Integration, 2017, 6: 1-10.
DOI URL |
[2] | 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7): 1255-1259. |
[3] |
赵鹏大, 陈永清. 数字地质与数字矿产勘查[J]. 地学前缘, 2021, 28(3): 1-5.
DOI |
[4] |
赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4): 1-5.
DOI |
[5] | 郭华东. 地球大数据科学工程[J]. 中国科学院院刊, 2018, 33(8): 818-824. |
[6] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展[J]. 岩石学报, 2018, 34(2): 255-263. |
[7] |
王功文, 张寿庭, 燕长海, 等. 栾川矿集区矿产勘查大数据挖掘与三维/四维建模的资源-环境联合预测与定量评价[J]. 地学前缘, 2021, 28(3): 139-155.
DOI |
[8] | 王功文, 张智强, 李瑞喜, 等. 华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价[J]. 中国科学: 地球科学, 2021, 51(9): 1594-1610. |
[9] | CODE J. Australasian code for reporting of exploration result, mineral resources and ore reserves. The joint ore reserves committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of geoscientists and Minerals Council of Australia[S]. (2012-2-20) [2021-2-30]. http://www.jorc.org.2012. |
[10] | 周晓将, 毕惠珍. 上房沟钼铁矿区高滑石型难选矿石配矿管理方法采矿技术[J]. 矿业研究与开发, 2021, 21(1): 170-172. |
[11] |
LIU Z, ZUO L, XU S, et al. 3D Multi-parameter geological modeling and knowledge findings for Mo oxide orebodies in the Shangfanggou porphyry-skarn Mo(-Fe) deposit, Henan Province, China[J]. Minerals, 2022, 12(6): 769.
DOI URL |
[12] | 简新玲, 张书彦, 庞运超, 等. 河南省栾川县上房沟矿区钼铁矿资源储量核实报告[R]. 郑州: 河南省地质矿产勘查开发局地球物理勘查队, 2012. |
[13] | 孙大勇, 肖舜元, 祁忠旭, 等. 洛钼上房沟高滑石型难选钼矿选矿试验研究[J]. 矿业研究与开发, 2019, 39(3): 43-47. |
[14] | 王玲, 赵战锋. 工艺矿物学在地质冶金学中的应用及问题[J]. 矿产综合利用, 2020, 2: 37-43. |
[15] | 郝跃. 智能矿山大数据关键技术与发展研究[J]. 世界有色金属, 2022, 592(4): 15-17. |
[16] | 黄蕾蕾. 内蒙古乌努格吐山矿山高精度三维地质建模与评价[D]. 北京: 中国地质大学(北京), 2020. |
[17] | 王功文, 张寿庭, 陈建平, 等. 大型-超大型矿床定量评价技术手册[S]. 北京: 地质出版社, 2019. |
[18] | 王功文, 张寿庭, 燕长海, 等. 基于地质与重磁数据集成的栾川钼多金属矿区三维地质建模[J]. 地球科学: 中国地质大学学报, 2011, 36(2): 360-366. |
[19] | 杨艳, 张静, 杨永飞, 等. 栾川上房沟钼矿床流体包裹体特征及其地质意义[J]. 岩石学报, 2009, 25(10): 2563-2574. |
[20] | 瓮纪昌, 高胜淮, 石聪, 等. 栾川上房沟特大型钼矿床蚀变分带规律研究[J]. 中国钼业, 2008, 139(3): 16-24. |
[21] | 韩江伟, 云辉, 胡红雷, 等. 河南栾川矿集区深部钨钼矿体特征及资源预测[J]. 金属矿山, 2020, 533(11): 141-151. |
[22] | 何亚清, 杜红波, 彭府华. 三道庄矿露天和地下岩体工程灾害监测预警应用[J]. 有色地质, 2017, 69(4): 81-85. |
[23] | BOOYSENREN E, LORENZ S, THIELE S T, et al. Accurate hyperspectral imaging of mineralised outcrops: an example from lithium-bearing pegmatites at Uis, Namibia[J]. Remote Sensing of Environment, 2022(269): 112790. |
[24] |
ALI S H, GIURCO D, ARNDT N, et al. Mineral supply for sustainable development requires resource governance[J]. Nature, 2017, 543(7645): 367-372.
DOI |
[25] |
JAKOB S, ZIMMERMANN R, GLOAGUEN R. The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: MEPHySTo: a toolbox for pre-processing drone-borne hyperspectral data[J]. Remote Sensing, 2017, 9(1): 88.
DOI URL |
[26] |
JAMES M R, ROBSON S, D’OLEIRE-OLTMANNS S, et al. Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment[J]. Geomorphology, 2017, 280: 51-66.
DOI URL |
[27] |
KRUPNIK D, KHAN S. Close-range, ground-based hyperspectral imaging for mining applications at various scales: review and case studies[J]. Earth Science Review, 2019, 198: 102952.
DOI URL |
[28] |
GALLWEY J, ROBIATI C, COGGAN J, et al. A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: applying deep learning to shallow mining[J]. Remote Sensing of Environment, 2020, 248: 111970.
DOI URL |
[29] |
YANG Y, CHEN Y J, ZHANG J, et al. Ore geology, fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling, Central China[J]. Ore Geology Review, 2013, 55: 146-161.
DOI URL |
[30] | 常瑜琳, 王功文, 黄蕾蕾, 等. 用于矿山岩粉矿物光谱测试分析的压片设备: CN218330841U[P]. 2023-2-17. |
[31] | HOULDING S W. 3D geoscience modeling-computer techniques for geological characterization[M]. Berlin: Springer-Verlag, 1994. |
[32] |
MALLET J L. Discrete modeling for natural objects[J]. Mathematical Geology, 1997, 29(2): 199-219.
DOI URL |
[33] | MARJORIBANKS R. Geological methods in mineral exploration and mining[M]. Second Edition. New York: Springer, 2010. |
[34] |
HUANG L, WANG G, CARRANZA E J M, et al. Multi-scalenumerical simulation and 3D modeling for deep mineral exploration in the Jiaojia gold district, China[J]. Natural Resources Research, 2020, 29: 415-438.
DOI |
[35] |
JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
DOI PMID |
[36] |
KERR R A. The coming copper peak[J]. Science, 2014, 343(6172): 722-724.
DOI PMID |
[37] | KREUZER O P, YOUSEFI M, NYKÁNEN V. Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting[J]. Ore Geology Reviews, 2020, 103391. |
[38] |
MOGOLLON C U, MAHER K. White mica geochemistry: discriminating between barren and mineralized porphyry systems[J]. Economic Geology, 2020, 115(2): 325-354.
DOI URL |
[39] |
WANG G, ZHANG Z, LI R. et al. Resource prediction and assessment based on 3D/4D big data modeling and deep integration in key ore districts of North China[J]. Science China: Earth Sciences, 2021, 64(9): 1590-1606.
DOI |
[49] | KOKALY R F, CLARK R N, SWAYZE G A, et al. USGS spectral library Version 7[R]. Denver: Geological Survey Data Series, 2017(1305): 61. |
[40] | KOKKALA A M. An engineering geological database for managing, planning and protecting intelligent cities: the case of Thessaloniki city in Northern Greece[J]. Engineering Geology, 2022(301): 106617. |
[41] | NEWMAN C, POULSON S R, MCCREA K W. Contaminant generation and transport from mine pit lake to perennial stream system: multidisciplinary investigations at the Big Ledge Mine, Nevada, USA[J]. Geochemistry, 2020(80): 125552. |
[42] |
BOX G E P. Science and statistics[J]. Journal of the American Statistical Association, 1976, 71: 791-799. DOI: 10.1080/01621459.1976.10480949.
DOI URL |
[43] |
DUTTA S, BANDOPADHYAY S, GANGULI R. Machinelearning algorithms and their application to ore reserve estimation of sparse and imprecise data[J]. JILSA, 2010, 2: 86-96. DOI: 10.4236/jilsa.2010.22012.
DOI URL |
[44] | NEZAMOLHOSSEINI S A, MOJTAHEDZADEH S H, GHOLAMNEJAD J. Theapplication of artificial neural networks to ore reserve estimation at Choghart Iron Ore Deposit[J]. Analytical and Numerical Methods in Mining Engineering, Special Issue, 2017, 6: 73-83. |
[45] | THIELE S T, LORENZ S, KIRSCH M, et al. Multi-scale, multi-sensor data integration for automated 3-D geological mapping[J]. Ore Geology Reviews, 2021(136): 104252. |
[46] | YIN B, ZUO R, XIONG Y, et al. Knowledge discovery of geochemical patterns from a data-driven perspective[J]. Journal of Geochemical Exploration, 2021(231): 106872. |
[47] | CHOI Y, NGUYEN H, BUI X, et al. Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods[J]. Resources Policy, 2022(75): 102522. |
[48] |
BĖRUB C L, OLIVOB G R, CHOUTEAU M, et al. Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada[J]. Ore Geology Reviews, 2018, 96: 130-145.
DOI URL |
[1] | JIANG Guo, ZHOU Kefa, WANG Jinlin, BAI Yong, SUN Guoqing, WANG Wei. Identification of lithium-beryllium granitic pegmatites based on deep learning [J]. Earth Science Frontiers, 2023, 30(5): 185-196. |
[2] | SHAO Xuewei, PENG Yongming, WANG Gongwen, ZHAO Xianyong, TANG Jiayang, HUANG Leilei, LIU Xiaoning, ZHAO Xiandong. Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(3): 236-251. |
[3] | MA Kunyuan, LI Ruochen, GONG Yiming.. Chemostratigraphy and cyclostratigraphy of the Ordovician Liangjiashan section from Shimenzhai of Qinhuangdao in North China. [J]. Earth Science Frontiers, 2016, 23(6): 268-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||