Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 335-351.DOI: 10.13745/j.esf.sf.2023.2.42
Previous Articles Next Articles
DU Baisong1,2,3(), ZHU Guangyou2,*(
), LIU Shufei1, WANG Yehan4, YU Bingsong3, XU Kexin3,5
Received:
2021-07-29
Revised:
2022-07-21
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
DU Baisong, ZHU Guangyou, LIU Shufei, WANG Yehan, YU Bingsong, XU Kexin. Key factors and mechanisms affecting calcite growth and dissolution-a critical review[J]. Earth Science Frontiers, 2023, 30(4): 335-351.
Fig.2 Dependency of step velocity on supersaturation according to different impurity models for calcite growth. C1,C2 and C3 are the impurity concentration in solution. Modified after [26].
Fig.8 Plots of Zeta potential of calcite vs. pH for different aqueous phosphate salts. (a) Iceland spar/synthetic calcite; (b) Natural calcite/carbonate rocks. Modified after [88].
[1] |
DONG S J, BERELSON W M, ROLLINS N E, et al. Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific[J]. Earth and Planetary Science Letters, 2019, 515: 1-12.
DOI URL |
[2] |
TANG H M, XIAN H Y, HE H P, et al. Kinetics and mechanisms of the interaction between the calcite ($10\bar{1}4$) surface and Cu2+-bearing solutions[J]. Science of the Total Environment, 2019, 668: 602-616.
DOI URL |
[3] |
POKROSKY O S, GOLUBEV S V, JORDAN G. Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60 ℃ and 30 atm pCO2[J]. Chemical Geology, 2009, 265(1/2): 33-43.
DOI URL |
[4] | 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12. |
[5] |
GLEDHILL D K, MORSE J W. Calcite solubility in Na-Ca-Mg-Cl brines[J]. Chemical Geology, 2006, 233(3/4): 249-256.
DOI URL |
[6] | JOSHI R M, SINGH K H. Petro-physics and rock physics of carbonate reservoirs[M]. New York: Springer, 2020: 4. |
[7] | PANDYA N S, PANDYA J R. Etching of calcite[J]. Nature, 1959, 184(4690): 894-895. |
[8] |
WATTS H. Etch pits on calcite cleavage faces[J]. Nature, 1959, 183(4657): 314.
DOI |
[9] |
BERNER R A. Comparative dissolution characteristics of carbonate minerals in the presence and absence of aqueous magnesium ion[J]. American Journal of Science, 1967, 265(1): 45-70.
DOI URL |
[10] |
MORSE J W. Dissolution kinetics of calcium carbonate in sea water: V.Effects of natural inhibitors and the position of the chemical lysocline[J]. American Journal of Science, 1974, 274(6): 638-647.
DOI URL |
[11] | PLUMMER L N, PARKHURST D L, WIGLEY T M L. Critical review of the kinetics of calcite dissolution and precipitation[M]// ACS symposium series. Washington DC: American Chemical Society, 1979: 537-573. |
[12] |
PLUMMER L N, WIGLEY T M L, PARKHURST D L. The kinetics of calcite dissolution in CO2-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2[J]. American Journal of Science, 1978, 278(2): 179-216.
DOI URL |
[13] |
SJÖBERG E L, RICKARD D T. The effect of added dissolved calcium on calcite dissolution kinetics in aqueous solutions at 25 ℃[J]. Chemical Geology, 1985, 49(4): 405-413.
DOI URL |
[14] |
GUTJAHR A, DABRINGHAUS H, LACMANN R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite I. Growth and dissolution rates in water[J]. Journal of Crystal Growth, 1996, 158(3): 296-309.
DOI URL |
[15] |
ALKATTAN M, OELKERS E H, DANDURAND J L, et al. An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80 ℃[J]. Chemical Geology, 1998, 151(1/2/3/4): 199-214.
DOI URL |
[16] |
CUBILLAS P, KÖHLER S, PRIETO M, et al. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves[J]. Chemical Geology, 2005, 216(1/2): 59-77.
DOI URL |
[17] |
GLEDHILL D K, MORSE J W. Dissolution kinetics of calcite in NaCl-CaCl2-MgCl2 brines at 25 ℃ and 1 bar pCO2[J]. Aquatic Geochemistry, 2004, 10(1/2): 171-190.
DOI URL |
[18] |
RUIZ-AGUDO E, KOWACZ M, PUTNIS C V, et al. The role of background electrolytes on the kinetics and mechanism of calcite dissolution[J]. Geochimica et Cosmochimica Acta, 2010, 74(4): 1256-1267.
DOI URL |
[19] |
RUIZ-AGUDO E, PUTNIS C V, JIMÉNEZ-LÓPEZ C, et al. An atomic force microscopy study of calcite dissolution in saline solutions: the role of magnesium ions[J]. Geochimica et Cosmochimica Acta, 2009, 73(11): 3201-3217.
DOI URL |
[20] |
NEWTON R C, MANNING C E. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones[J]. American Mineralogist, 2002, 87(10): 1401-1409.
DOI URL |
[21] | 陈勇, 王淼, 刘庆, 等. 盐效应和共同离子效应对方解石溶解度的影响及其地质意义[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 33-39. |
[22] |
GRATZ A J, HILLNER P E, HANSMA P K. Step dynamics and spiral growth on calcite[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 491-495.
DOI URL |
[23] |
GRATZ A J, MANNE S, HANSMA P K. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz[J]. Science, 1991, 251(4999): 1343-1346.
PMID |
[24] |
ASTILLEROS J M, PINA C M, FERNÁNDEZ-DÍAZ L, et al. The effect of barium on calcite{$10\bar{1}4$} surfaces during growth[J]. Geochimica et Cosmochimica Acta, 2000, 64(17): 2965-2972.
DOI URL |
[25] |
LEA A S, AMONETTE J E, BAER D R, et al. Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution[J]. Geochimica et Cosmochimica Acta, 2001, 65(3): 369-379.
DOI URL |
[26] |
DAVIS K J, DOVE P M, DE YOREO J J. The role of Mg2+ as an impurity in calcite growth[J]. Science, 2000, 290(5494): 1134-1137.
DOI URL |
[27] |
XU M, HIGGINS S R. Effects of magnesium ions on near-equilibrium calcite dissolution: step kinetics and morphology[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 719-733.
DOI URL |
[28] |
WARD M D. Snapshots of crystal growth[J]. Science, 2005, 308(5728): 1566-1567.
DOI URL |
[29] |
OHNESORGE F, BINNIG G. Trueatomic resolution by atomic force microscopy through repulsive and attractive forces[J]. Science, 1993, 260(5113): 1451-1456.
DOI URL |
[30] |
HILLNER P E, GRATZ A J, MANNE S, et al. Atomic-scale imaging of calcite growth and dissolution in real time[J]. Geology, 1992, 20(4): 359-362.
DOI URL |
[31] |
DOVE P M, HOCHELLA M F. Calcite precipitation mechanisms and inhibition by orthophosphate: in situ observations by Scanning Force Microscopy[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 705-714.
DOI URL |
[32] |
TENG H H, DOVE P M, DE YOREO J J. Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2255-2266.
DOI URL |
[33] |
LARSEN K, BECHGAARD K, STIPP S L S. The effect of the Ca2+ to CO32- activity ratio on spiral growth at the calcite ($10\bar{1}4$) surface[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2099-2109.
DOI URL |
[34] |
REDDY M M, GAILLARD T D. Kinetics of calcium carbonate (calcite)-seeded crystallization: influence of solid/solution ratio on the reaction rate constant[J]. Journal of Colloid and Interface Science, 1981, 80(1): 171-178.
DOI URL |
[35] |
WASYLENKI L E, DOVE P M, WILSON D S, et al. Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects[J]. Geochimica et Cosmochimica Acta, 2005, 69(12): 3017-3027.
DOI URL |
[36] |
NIELSEN M H, ALONI S, DE YOREOJ J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162.
DOI URL |
[37] |
HODKIN D J, STEWART D I, GRAHAM J T, et al. Enhanced crystallographic incorporation of strontium(II) ions into calcite via preferential adsorption at obtuse growth steps[J]. Crystal Growth and Design, 2018, 18(5): 2836-2843.
DOI URL |
[38] |
KLASA J, RUIZ-AGUDO E, WANG L J, et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions[J]. Geochimica et Cosmochimica Acta, 2013, 117: 115-128.
DOI URL |
[39] |
PAQUETTE J, REEDER R J. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 735-749.
DOI URL |
[40] |
RISTIC R I, DEYOREO J J, CHEW C M. Does impurity-induced step-bunching invalidate key assumptions of thecabrera-vermilyea model?[J]. Crystal Growth and Design, 2008, 8(4): 1119-1122.
DOI URL |
[41] |
VAN ENCKEVORT W J P, VAN DEN BERG A C J F. Impurity blocking of crystal growth: a Monte Carlo study[J]. Journal of Crystal Growth, 1998, 183(3): 441-455.
DOI URL |
[42] |
ARVIDSON R S, COLLIER M, DAVIS K J, et al. Magnesium inhibition of calcite dissolution kinetics[J]. Geochimicaet Cosmochimica Acta, 2006, 70(3): 583-594.
DOI URL |
[43] |
TENG H H, DOVE P M, ORME C A, et al. Thermodynamics of calcite growth:baseline for understanding biomineral formation[J]. Science, 1998, 282(5389): 724-727.
DOI URL |
[44] |
ZHANG Y, DAWE R. The kinetics of calcite precipitation from a high salinity water[J]. Applied Geochemistry, 1998, 13(2): 177-184.
DOI URL |
[45] |
BISCHOFF J L. Kinetics of calcite nucleation:magnesium ion inhibition and ionic strength catalysis[J]. Journal of Geophysical Research, 1968, 73(10): 3315-3322.
DOI URL |
[46] |
TENG H H. Controls by saturation state on etch pit formation during calcite dissolution[J]. Geochimica et Cosmochimica Acta, 2004, 68(2):253-262.
DOI URL |
[47] |
NAVIAUX J D, SUBHAS A V, ROLLINS N E, et al. Temperature dependence of calcite dissolution kinetics in seawater[J]. Geochimica et Cosmochimica Acta, 2019, 246: 363-384.
DOI |
[48] |
JEAN C. The alkaline dissolution rate of calcite[J]. Journal of Physical Chemistry Letters, 2016, 7(13): 2376-2380.
DOI PMID |
[49] |
VINSON M, LÜTTGE A. Multiple length-scale kinetics: an integrated study of calcite dissolution rates and strontium inhibition[J]. American Journal of Science, 2005, 305(2): 119-146.
DOI URL |
[50] |
SJÖBERG E L, RICKARD D T. Temperature dependence of calcite dissolution kinetics between 1 and 62 ℃ at pH 2.7 to 8.4 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1984, 48(3): 485-493.
DOI URL |
[51] |
FINNERAN D W, MORSE J W. Calcite dissolution kinetics in saline waters[J]. Chemical Geology, 2009, 268(1): 137-146.
DOI URL |
[52] |
ELLIS A J. The solubility of calcite in carbon dioxide solutions[J]. American Journal of Science, 1959, 257(5): 354-365.
DOI URL |
[53] | SJÖBERG E L. Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperatures[J]. Stockholm Contributions in Geology, 1978, 32: 1-92. |
[54] |
MACINNISIAN N, BRANTLEY S L. The role of dislocations and surface morphology in calcite dissolution[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1113-1126.
DOI URL |
[55] |
FREDD C N, FOGLER H S. The kinetics of calcite dissolution in acetic acid solutions[J]. Chemical Engineering Science, 1998, 53(22): 3863-3874.
DOI URL |
[56] |
MILLER J P. A portion of the system calcium carbonate-carbon dioxide-water, with geological implications[J]. American Journal of Science, 1952, 250(3): 161-203.
DOI URL |
[57] |
SEGNIT E R, HOLLAND H D, BISCARDI C J. The solubility of calcite in aqueous solutions: I.The solubility of calcite in water between 75 ℃ and 200 ℃ at CO2 pressures up to 60 atm[J]. Geochimica et Cosmochimica Acta, 1962, 26(12): 1301-1331.
DOI URL |
[58] |
SHARP W E, KENNEDY G C. Thesystem CaO-CO2-H2O in the two-phase region calcite + aqueous solution[J]. The Journal of Geology, 1965, 73(2): 391-403.
DOI URL |
[59] |
CACIAGLI N C, MANNING C E. The solubility of calcite in water at 6-16 kbar and 500-800 ℃[J]. Contributions to Mineralogy and Petrology, 2003, 146: 275-285.
DOI URL |
[60] | WALTHER J V, LONG M I. Experimental determination of calcite solubilities in supercritical H2O[C]// Fifth international symposium on water-rock interaction. Reykjavik, Iceland: National Energy Authority, 1986, 5: 609-611. |
[61] |
FEIN J B, WALTHER J V. Calcite solubility and speciation in supercritical NaCl-HCl aqueous fluids[J]. Contributions to Mineralogy and Petrology, 1989, 103(3): 317-324.
DOI URL |
[62] | 范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38(1): 20-26. |
[63] |
SALEM M R, MANGOOD A H, HAMDONA S K. Dissolution of calcite crystals in the presence of some metal ions[J]. Journal of Materials Science, 1994, 29(24): 6463-6467.
DOI URL |
[64] |
KEIR R S. The dissolution kinetics of biogenic calcium carbonates in seawater[J]. Geochimica et Cosmochimica Acta, 1980, 44(2): 241-252.
DOI URL |
[65] |
LASAGA A C, LUTTGE A. Variation of crystal dissolution rate based on a dissolution stepwave model[J]. Science, 2001, 291(5512): 2400-2404.
PMID |
[66] |
KURGANSKAYA I, LUTTGE A. Kinetic Monte Carlo approach to study carbonate dissolution[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6482-6492.
DOI URL |
[67] |
BOUDREAU B P. Carbonate dissolution rates at the deep ocean floor[J]. Geophysical Research Letters, 2013, 40(4): 744-748.
DOI URL |
[68] |
PETERSON M N A. Calcite: rates of dissolution in a vertical profile in the central Pacific[J]. Science, 1966, 154(3756): 1542-1544.
PMID |
[69] |
HONJO S, EREZ J. Dissolution rates of calcium carbonate in the deep ocean: an in situ experiment in the North Atlantic Ocean[J]. Earth and Planetary Science Letters, 1978, 40: 287-300.
DOI URL |
[70] |
FUKUHARA T, TANAKA Y, IOKA N, et al. An in situ experiment of calcium carbonate dissolution in the central Pacific Ocean[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 78-88.
DOI URL |
[71] |
SUBHAS A V, ADKINS J F, ROLLINS N E, et al. Catalysis and chemical mechanisms of calcite dissolution in seawater[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8175-8180.
DOI PMID |
[72] |
DONG S, SUBHAS A V, ROLLINS N E, et al. A kinetic pressure effect on calcite dissolution in seawater[J]. Geochimica et Cosmochimica Acta, 2018, 238: 411-423.
DOI URL |
[73] |
BLUM A E, YUND R A, LASAGA A C. The effect of dislocation density on the dissolution rate of quartz[J]. Geochimica et Cosmochimica Acta, 1990, 54(2): 283-297.
DOI URL |
[74] |
WALTER L M, BURTON E A. The effect of orthophosphate on carbonate mineral dissolution rates in seawater[J]. Chemical Geology, 1986, 56(3/4): 313-323.
DOI URL |
[75] |
BERNER R A, MORSE J W. Dissolution kinetics of calcium carbonate in sea water: IV.Theory of calcite dissolution[J]. American Journal of Science, 1974, 274(2): 108-134.
DOI URL |
[76] |
NAVIAUX J D, SUBHAS A V, DONG S J, et al. Calcite dissolution rates in seawater:lab vs. in situ measurements and inhibition by organic matter[J]. Marine Chemistry, 2019, 215: 103684.
DOI URL |
[77] |
GUTJAHR A, DABRINGHAUS H, LACMANN R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite: II.The influence of divalent cation additives on the growth and dissolution rates[J]. Journal of Crystal Growth, 1996, 158(3): 296-309.
DOI URL |
[78] |
BUHMANN D, DREYBRODT W. Calcite dissolution kinetics in the system H2O-CO2-CaCO3 with participation of foreign ions[J]. Chemical Geology, 1987, 64(1/2): 89-102.
DOI URL |
[79] |
COMPTON R G, BROWN C A. The inhibition of calcite dissolution/precipitation: Mg2+ cations[J]. Journal of Colloid and Interface Science, 1994, 165(2): 445-449.
DOI URL |
[80] |
ALKATTAN M, OELKERS E H, DANDURAND J L, et al. An experimental study of calcite dissolution rates at acidic conditions and 25 ℃ in the presence of NaPO3 and MgCl2[J]. Chemical Geology, 2002, 190(1/2/3/4): 291-302.
DOI URL |
[81] | SABBIDES T G, KOUTSOUKOS P G. The dissolution of calcium carbonate in the presence of magnesium and inorganic orthophosphate[M]// Mineral scale formation and inhibition. Boston: Springer, 1995: 73-86. |
[82] | PARKS G A. Adsorption in the marine environment[M]// RILEY P, SKIRROW G. Chemical oceanography. San Francisco: Academic Press, 1975: 241-308. |
[83] |
DE KANEL J, MORSE J W. The chemistry of orthophosphate uptake from seawater on to calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 1978, 42(9): 1335-1340.
DOI URL |
[84] |
MORSE J W, MACKENZIE F T. Geochemical constraints on CaCO3 transport in subsurface sedimentary environments[J]. Chemical Geology, 1993, 105(1/2/3): 181-196.
DOI URL |
[85] |
MILLERO F, HUANG F, ZHU X R, et al. Adsorption and desorption of phosphate on calcite and aragonite in seawater[J]. Aquatic Geochemistry, 2001, 7(1): 33-56.
DOI URL |
[86] |
THOMPSON D W, POWNALL P G. Surface electrical-properties of calcite[J]. Journal of Colloid and Interface Science, 1989, 131(1): 74-82.
DOI URL |
[87] |
KASHA A, AL-HASHIM H, ABDALLAH W, et al. Effect of Ca2+, Mg2+ and SO42- ions on the Zeta potential of calcite and dolomite particles aged with stearic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 290-299.
DOI URL |
[88] |
AL MAHROUQI D, VINOGRADOV J, JACKSON M D. Zeta potential of artificial and natural calcite in aqueous solution[J]. Advances in Colloid and Interface Science, 2017, 240: 60-76.
DOI PMID |
[89] |
SIFFERT D, FIMBEL P. Parameters affecting the sign and magnitude of the eletrokinetic potential of calcite[J]. Colloids and Surfaces, 1984, 11(3/4): 377-389.
DOI URL |
[90] |
POKROVSKY O, GOLUBEV S, SCHOTT J. Dissolution kinetics of calcite, dolomite and magnesite at 25 ℃ and 0 to 50 atm pCO2[J]. Chemical Geology, 2005(3/4), 217: 239-255.
DOI URL |
[91] |
ZUDDAS P, MUCCI A. Kinetics ofcalcite precipitation from seawater: II.The influence of the ionic strength[J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 757-766.
DOI URL |
[92] | LIPPMANN F. Sedimentary carbonate minerals[J]. Chemical Geology, 1973, 12: 407-407. |
[93] |
ARVIDSON R S, MACKENZIE F T. The dolomite problem: control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 1999, 299: 257-288.
DOI URL |
[94] |
LIANG Y, BAER D R, MCCOY J M, et al. Dissolution kinetics at the calcite-water interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4883-4887.
DOI URL |
[95] |
XU M, HU X M, KNAUSS K G, et al. Dissolution kinetics of calcite at 50 to 70 ℃: an atomic force microscopic study under near-equilibrium conditions[J]. Geochimica et Cosmochimica Acta, 2010, 74: 4285-4297.
DOI URL |
[96] |
TENG H H, DOVE P M, DE YOREO J J. Reversed calcite morphologies induced by microscopic growth kinetics: insight into biomineralization[J]. Geochimica et Cosmochimica Acta, 1999, 63(17): 2507-2512.
DOI URL |
[97] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[1] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[2] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[3] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[4] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[5] | LI Huili, GAO Jian, CAO Zicheng, ZHU Xiuxiang, GUO Xiaowen, ZENG Shuai. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 316-328. |
[6] | SUN Ke, LIU Huiqing, WANG Jing, LIU Renjie, FENG Yabin, KANG Zhijiang, ZHANG Yun. Stress sensitivity characteristics of deep carbonate fractured porous media [J]. Earth Science Frontiers, 2023, 30(6): 351-364. |
[7] | FAN Tailiang, GAO Zhiqian, WU Jun. Formation and modification of deep-burial carbonate rocks and orderly distribution of multi-type reservoirs in the Tarim Basin [J]. Earth Science Frontiers, 2023, 30(4): 1-18. |
[8] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[9] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[10] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[11] | WANG Genjiu, SONG Xinmin, LIU Bo, SHI Kaibo, LIU Hangyu. High permeability zone of Cretaceous porous carbonate reservoir of A Field, Iraq: Genesis and distribution characteristics [J]. Earth Science Frontiers, 2022, 29(5): 483-496. |
[12] | XU Shenglin, DING Weicui, CHEN Xuanhua, LI Tingdong, HAN Lele, LIU Yong, MA Feizhou, WANG Ye. Late Paleozoic crustal composition and growth in West Junggar: Evidence from Sr-Nd-Pb isotopic mapping [J]. Earth Science Frontiers, 2022, 29(2): 261-280. |
[13] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[14] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
[15] | CHENG Qiuming. What are Mathematical Geosciences and its frontiers? [J]. Earth Science Frontiers, 2021, 28(3): 6-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||