Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 352-375.DOI: 10.13745/j.esf.sf.2022.10.43
Previous Articles Next Articles
LI Xi(), ZHU Guangyou*(
), LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie
Received:
2022-06-16
Revised:
2022-11-05
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
LI Xi, ZHU Guangyou, LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence[J]. Earth Science Frontiers, 2023, 30(4): 352-375.
Fig.1 Tectonic zoning map of the Central Uplift (a, b) and composite stratigraphic column of Ordovician strata in Tarim Basin (c). Modified after [59].
![]() |
Table 1 Data of trace elemental and stable isotopic compositions on carbonate rock samples from the Yingshan Formation and related geochemical parameters by calculation
![]() |
Fig.7 Composite chart showing correlation in the vertical direction between high-frequency sedimentary cycles and isotopic/geochemical proxies in the Yingshan Formation
Fig.8 Composite chart showing Mg isotope variation trends correlating with migration pathways of dolomitic fluid in the Yingshan Formation. (a) L→DL→D; (b) D1→D2; (c) D1→D2→D3→D4→L; (d) D4→DL/D).
[1] |
RIECHELMANN S, MAVROMATIS V, BUHL D, et al. Controls on formation and alteration of early diagenetic dolomite: a multi-proxy δ44/40Ca, δ26Mg, δ18O and δ13C approach[J]. Geochimica et Cosmochimica Acta, 2020, 283: 167-183.
DOI URL |
[2] | 赵宗举. 海相碳酸盐岩储集层类型、成藏模式及勘探思路[J]. 石油勘探与开发, 2008, 35(6): 692-703. |
[3] | 朱光有, 杨海军, 苏劲, 等. 中国海相油气地质理论新进展[J]. 岩石学报, 2012, 28(3): 722-738. |
[4] | 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5): 545-554. |
[5] | 何治亮, 马永生, 张军涛, 等. 中国的白云岩与白云岩储层: 分布、成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1-14. |
[6] |
WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
DOI URL |
[7] |
RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. A route for the direct crystallization of dolomite[J]. American Mineralogist, 2015, 100(5/6): 1172-1181.
DOI URL |
[8] |
JIANG L, CAI C F, WORDEN R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157.
DOI URL |
[9] |
XIONG L Q, YAO G S, XIONG S Y, et al. Origin of dolomite in the Middle Devonian Guanwushan Formation of the western Sichuan Basin, Western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 113-126.
DOI URL |
[10] |
DAVIES G R, SMITH L B Jr. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
DOI URL |
[11] | VASCONCELOS C, MCKENZIE J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
[12] |
WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091.
DOI URL |
[13] |
BONTOGNALI T R R, VASCONCELOS C, WARTHMANN R J, et al. Dolomite-mediating bacterium isolated from the Sabkha of Abu Dhabi (UAE)[J]. Terra Nova, 2012, 24(3): 248-254.
DOI URL |
[14] |
PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al. Microbially catalyzed dolomite formation: from near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
DOI URL |
[15] |
LIU D, YU N, PAPINEAU D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49.
DOI URL |
[16] |
LAND L S. Failure to precipitate dolomite at 25℃ from Dilute Solution Despite 1000-Fold Over saturation after 32 Years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368.
DOI URL |
[17] |
MACHEL H G. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society of London, Special Publications, 2004, 235(1): 7-63.
DOI URL |
[18] | CHANG B, LI C, LIU D, et al. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014. |
[19] |
CAI W K, LIU J H, ZHOU C H, et al. Structure, genesis and resources efficiency of dolomite: new insights and remaining enigmas[J]. Chemical Geology, 2021, 573: 120191.
DOI URL |
[20] |
YANG L L, ZHU G Y, LI X W, et al. Influence of crystal nucleus and lattice defects on dolomite growth: geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587: 120631.
DOI URL |
[21] |
WANAS H A, SALLAM E. Abiotically-formed, primarydolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: an approach to the role of smectitic clays[J]. Sedimentary Geology, 2016, 343: 132-140.
DOI URL |
[22] |
LIU D, XU Y Y, PAPINEAU D, et al. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals[J]. Geochimica et Cosmochimica Acta, 2019, 247: 83-95.
DOI URL |
[23] | LUMSDEN D N. Characteristics of deep-marine dolomite[J]. Journal of Sedimentary Research, 1988, 58(6): 1023-1031. |
[24] |
GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769.
DOI URL |
[25] |
MCKENZIE J A, VASCONCELOS C. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives[J]. Sedimentology, 2009, 56(1): 205-219.
DOI URL |
[26] |
HUANG K J, SHEN B, LANG X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351.
DOI URL |
[27] |
PENG Y, SHEN B, LANG X G, et al. Constraining dolomitization by Mg isotopes: a case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1109-1129.
DOI URL |
[28] |
NING M, LANG X G, HUANG K J, et al. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 2020, 545: 116403.
DOI URL |
[29] |
GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from Speleothem Formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.
DOI URL |
[30] |
WIMPENNY J, BURTON K W, JAMES R H, et al. The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 260-269.
DOI URL |
[31] |
FANTLE M S, HIGGINS J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg[J]. Geochimica et Cosmochimica Acta, 2014, 142: 458-481.
DOI URL |
[32] |
GALY A, BELSHAW N S, HALICZ L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1/2/3): 89-98.
DOI URL |
[33] |
GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1352-1356.
DOI URL |
[34] |
TENG F Z, YANG W. Comparison of factors affecting the accuracy of high-precision magnesium isotope analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2014, 28(1): 19-24.
DOI URL |
[35] |
TENG F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
DOI URL |
[36] |
GAO T, KE S, LI R Y, et al. High-precision magnesium isotope analysis of geological and environmental reference materials by multiple-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2019, 33(8): 767-777.
DOI PMID |
[37] |
NING M, HUANG K J, LANG X G, et al. Can crystal morphology indicate different generations of Dolomites: evidence from magnesium isotopes[J]. Chemical Geology, 2019, 516: 1-17.
DOI URL |
[38] |
HU Z Y, HU W X, LIU C, et al. Conservative behavior of Mg isotopes in massive dolostones: from diagenesis to hydrothermal reworking[J]. Sedimentary Geology, 2019, 381: 65-75.
DOI URL |
[39] |
LI W Q, BIALIK O M, WANG X M, et al. Effects of early diagenesis on Mg isotopes in dolomite: the roles of Mn(IV)-reduction and recrystallization[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1-17.
DOI URL |
[40] |
MAVROMATIS V, MEISTER P, OELKERS E H. Using stable Mg isotopes to distinguish dolomite formation mechanisms: a case study from the Peru Margin[J]. Chemical Geology, 2014, 385: 84-91.
DOI URL |
[41] |
BLÄTTLER C L, MILLER N R, HIGGINS J A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J]. Earth and Planetary Science Letters, 2015, 419: 32-42.
DOI URL |
[42] |
GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151.
DOI URL |
[43] |
LI W Q, BEARD B L, LI C X, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181.
DOI URL |
[44] |
HIGGINS J A, BLÄTTLER C L, LUNDSTROM E A, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 220: 512-534.
DOI URL |
[45] | 朱光有, 李茜, 李婷婷, 等. 镁同位素示踪白云石化流体迁移路径:以四川盆地石炭系黄龙组为例[J]. 地质学报, 2023, 97(3): 753-771. |
[46] | 朱光有, 李茜, 李婷婷, 等. 塔里木盆地震旦纪-寒武纪之交白云岩成因机理及Mg同位素差异[J]. 中国科学:地球科学, 2023, 53(2): 319-344. |
[47] |
李茜, 朱光有, 李婷婷, 等. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603.
DOI |
[48] |
LI X, ZHU G Y, LI T T, et al. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: a case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin[J]. Applied Geochemistry, 2023, 148: 105540.
DOI URL |
[49] |
ZHU G Y, JIANG N H, SU J, et al. Distribution and implication of adamantane in crude oils in Lunnan Area, Tarim Basin in China[J]. Energy Exploration and Exploitation, 2012, 30(6): 957-970.
DOI URL |
[50] |
ZHU G Y, MILKOV A V, ZHANG Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743.
DOI URL |
[51] |
ZHU G Y, ZHANG Y, ZHOU X X, et al. TSR, deep oil cracking and exploration potential in the Hetianhe gas field, Tarim Basin, China[J]. Fuel, 2019, 236: 1078-1092.
DOI URL |
[52] |
ZHU G Y, ZHANG Z Y, MILKOV A V, et al. Diamondoids as tracers of late gas charge in oil reservoirs: example from the Tazhong Area, Tarim Basin, China[J]. Fuel, 2019, 253: 998-1017.
DOI URL |
[53] | 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134. |
[54] | 刘嘉庆, 李忠, 颜梦珂, 等. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化: 来自团簇同位素的证据[J]. 石油与天然气地质, 2020, 41(1): 68-82. |
[55] | 刘红, 冯子辉, 邵红梅, 等. U-Pb同位素定年分析在热液对白云岩储层改造研究中的应用: 以塔里木盆地古城地区下奥陶统鹰三段为例[J]. 岩石学报, 2022, 38(3): 765-776. |
[56] |
李凌, 谭秀成, 陈景山, 等. 塔中北部中下奥陶统鹰山组白云岩特征及成因[J]. 西南石油大学学报(自然科学版), 2007, 29(1): 34-36, 140.
DOI |
[57] | 李鹏春, 陈广浩, 曾乔松, 等. 塔里木盆地塔中地区下奥陶统白云岩成因[J]. 沉积学报, 2011, 29(5): 842-856. |
[58] | 郑兴平, 刘永福, 张杰, 等. 塔里木盆地塔中隆起北坡鹰山组白云岩储层特征与成因[J]. 石油实验地质, 2013, 35(2): 157-161. |
[59] | 康仁东, 孟万斌, 肖春晖. 塔里木盆地顺南地区奥陶系鹰山组白云岩形成机制及其发育模式[J]. 石油实验地质, 2020, 42(6): 900-909. |
[60] | LI D S, LIANG D G, JIA C Z, et al. Hydrocarbon accumulations in the Tarim Basin, China[J]. AAPG Bulletin, 1996, 80: (10): 1587-1603. |
[61] |
YU J B, LI Z, YANG L. Fault system impact on paleokarst distribution in the Ordovician Yingshan Formation in the central Tarim Basin, northwest China[J]. Marine and Petroleum Geology, 2016, 71: 105-118.
DOI URL |
[62] | 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997. |
[63] | 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221. |
[64] | 李忠, 李佳蔚, 张平童, 等. 深层碳酸盐岩关键构造-流体演变与成岩-成储: 以塔中奥陶系鹰山组为例[J]. 矿物岩石地球化学通报, 2016, 35(5): 827-838. |
[65] | 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555. |
[66] |
曹颖辉, 王珊, 张亚金, 等. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发, 2019, 46(6): 1099-1114.
DOI |
[67] |
沈安江, 张友, 冯子辉, 等. 塔东古城地区碳酸盐岩储层地质认识与勘探领域[J]. 中国石油勘探, 2020, 25(3): 96-106.
DOI |
[68] |
张友, 李强, 郑兴平, 等. 塔里木盆地东部古城-肖塘地区寒武纪-奥陶纪台地类型、演化过程及有利储集相带[J]. 石油学报, 2021, 42(4): 447-465.
DOI |
[69] | 邬光辉, 陈鑫, 马兵山, 等. 塔里木盆地晚新元古代-早古生代板块构造环境及其构造-沉积响应[J]. 岩石学报, 2021, 37(8): 2431-2441. |
[70] | 王珊, 曹颖辉, 杜德道, 等. 塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J]. 岩石学报, 2020, 36(11): 3477-3492. |
[71] |
HUANG B W, ZHANG S N, LU Z Y, et al. Origin of Dolomites in Lower-Middle Ordovician carbonate rocks in the Yingshan Formation, Gucheng Area, Tarim Basin: evidence from petrography and geochemical data[J]. Marine and Petroleum Geology, 2021, 134: 105322.
DOI URL |
[72] | DICKSON J A D. Carbonate identification and genesis as revealed by staining[J]. Journal of Sedimentary Research, 1966, 36(2): 491-505. |
[73] |
SHEN B, JACOBSEN B, LEE C T A, et al. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20652-20657.
DOI PMID |
[74] |
SHEN B, WIMPENNY J, LEE C T A, et al. Magnesium isotope systematics of endoskarns:implications for wallrock reaction in magma chambers[J]. Chemical Geology, 2013, 356: 209-214.
DOI URL |
[75] |
AN Y J, WU F, XIANG Y X, et al. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS[J]. Chemical Geology, 2014, 390: 9-21.
DOI URL |
[76] | 尤东华, 曹自成, 徐明军, 等. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制[J]. 石油与天然气地质, 2020, 41(1): 92-101. |
[77] |
DU Y, FAN T L, MACHEL H G, et al. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim Basin, NW China: several limitations from petrology, geochemistry, and fluid inclusions[J]. Marine and Petroleum Geology, 2018, 91: 43-70.
DOI URL |
[78] |
GUO C, CHEN D Z, QING H R, et al. Early dolomitization and recrystallization of the lower-Middle Ordovician carbonates in western Tarim Basin (NW China)[J]. Marine and Petroleum Geology, 2020, 111: 332-349.
DOI URL |
[79] | SIBLEY D F, GREGG J M. Classification of dolomite rock textures[J]. Journal of Sedimentary Research, 1987, 57(6): 967-975. |
[80] | WRIGHT W R. Dolomitization, fluid-flow and mineralization of the lower Carboniferous rocks of the Irish Midlands and Dublin Basin regions[D]. Dublin, Ireland: University College Dublin, 2001. |
[81] |
沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3): 340-349.
DOI |
[82] |
赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935.
DOI |
[83] |
VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.
DOI URL |
[84] |
MCKENZIE J A. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study[J]. The Journal of Geology, 1981, 89(2): 185-198.
DOI URL |
[85] |
LAND L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
DOI URL |
[86] |
MAJOR R P, LLOYD R M, LUCIA F J. Oxygen isotope composition of Holocene dolomite formed in a humid hypersaline setting[J]. Geology, 1992, 20(7): 586.
DOI URL |
[87] |
LI Z H, DONG S W, QU H J. Timing of the initiation of the Jurassic Yanshan Movement on the North China Craton: evidence from sedimentary cycles, heavy minerals, geochemistry, and zircon U-Pb geochronology[J]. International Geology Review, 2014, 56(3): 288-312.
DOI URL |
[88] |
LEE Y I, KIM J C. Storm-influenced siliciclastic and carbonate ramp deposits, the Lower Ordovician Dumugol Formation, South Korea[J]. Sedimentology, 1992, 39(6): 951-969.
DOI URL |
[89] | 林畅松, 张燕梅, 刘景彦, 等. 高精度层序地层学和储层预测[J]. 地学前缘, 2000, 7(3): 111-117. |
[90] | LATIF K, XIAO E, RIAZ M, et al. Sequence stratigraphy, sea-level changes and depositional systems in the Cambrian of the North China Platform: a case study of Kouquan Section, Shanxi Province, China[J]. Journal of Himalayan Earth Science, 2018, 51(1):1-16. |
[91] |
LI J H. High precision sequence division and geological significance of Nantun Formation in Wunan subsag[J]. IOP Conference Series: Materials Science and Engineering, 2019, 585(1): 012083.
DOI |
[92] |
JARVIS I, MURPHY A M, GALE A S. Geochemistry of pelagic and hemipelagic carbonates: criteria for identifying systems tracts and sea-level change[J]. Journal of the Geological Society, 2001, 158(4): 685-696.
DOI URL |
[93] |
BÁBEK O, KALVODA J, COSSEY P, et al. Facies and petrophysical signature of the Tournaisian/Viséan (Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles[J]. Sedimentary Geology, 2013, 284/285: 197-213.
DOI URL |
[94] |
COLCORD D E, SHILLING A M, SAUER P E, et al. Sub-Milankovitch paleoclimatic and paleoenvironmental variability in East Africa recorded by Pleistocene lacustrine sediments from Olduvai Gorge, Tanzania[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 284-291.
DOI URL |
[95] |
NATALICCHIO M, DELA PIERRE F, BIRGEL D, et al. Paleoenvironmental change in a precession-paced succession across the onset of the Messinian salinity crisis: insight from element geochemistry and molecular fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518: 45-61.
DOI URL |
[96] |
FINDLATER G, SHELTON A, ROLIN T, et al. Sodium and strontium in mollusc shells: preservation, palaeosalinity and palaeotemperature of the Middle Pleistocene of eastern England[J]. Proceedings of the Geologists’ Association, 2014, 125(1): 14-19.
DOI URL |
[97] | FOLK R L, LAND L S. Mg/Ca ratio and salinity: two controls over crystallization of dolomite[J]. AAPG Bulletin, 1975, 59(1): 60-68. |
[98] |
QING H R, BOSENCE D W J, ROSE E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163.
DOI URL |
[99] |
LANGMUIR D, MELCHIOR D. The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Paloduro Basin, Texas[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2423-2432.
DOI URL |
[100] | 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414. |
[101] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
DOI URL |
[102] | CRAIG H. The measurement of oxygen isotope paleotemperatures[M]// Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Consigilio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, 1965:161-182. |
[103] | 江茂生, 朱井泉, 陈代钊, 等. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J]. 中国科学(D辑), 2002(1): 36-42. |
[104] |
GAO Z Q, FAN T L. Intra-platform tectono-sedimentary response to geodynamic transition along the margin of the Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2014, 96: 178-193.
DOI URL |
[105] |
YANG X Q, LI Z, FAN T L, et al. Carbon isotope (δ13Ccarb) stratigraphy of the Early-Middle Ordovician (Tremadocian-Darriwilian) carbonate platform in the Tarim Basin, NW China: implications for global correlations[J]. Geological Magazine, 2021, 158(3): 487-508.
DOI URL |
[106] |
DERRY L A, BRASIER M D, CORFIELD R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: a paleoenvironmental record during the ‘Cambrian explosion’[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 671-681.
DOI URL |
[107] |
KAUFMAN A J, JACOBSEN S B, KNOLL A H. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430.
DOI URL |
[108] |
KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
DOI URL |
[109] |
KOUCHINSKY A, BENGTSON S, GALLET Y, et al. The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform[J]. Geological Magazine, 2008, 145(5): 609-622.
DOI URL |
[110] |
LI D, LING H F, JIANG S Y, et al. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: implications for global correlation[J]. Geological Magazine, 2009, 146(4): 465-484.
DOI URL |
[111] |
BLENDINGER W. Sea level changes versus hydrothermal diagenesis: origin of Triassic carbonate platform cycles in the Dolomites, Italy[J]. Sedimentary Geology, 2004, 169(1/2): 21-28.
DOI URL |
[112] |
MONTAEZ I P, READ J F. Eustatic control on early dolomitization of cyclic peritidal carbonates: evidence from the Early Ordovician Upper Knox Group, Appalachians[J]. Geological Society of America Bulletin, 1992, 104(7): 872-886.
DOI URL |
[113] |
BOSENCE D W J, WOOD J L, ROSE E P F, et al. Low-and high-frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula)[J]. Journal of the Geological Society, 2000, 157(1): 61-74.
DOI URL |
[114] |
NOORIAN Y, MOUSSAVI-HARAMI R, HOLLIS C, et al. Control of climate, sea-level fluctuations and tectonics on the pervasive dolomitization and porosity evolution of the Oligo-Miocene Asmari Formation (Dezful Embayment, SW Iran)[J]. Sedimentary Geology, 2022, 427: 106048.
DOI URL |
[115] | 甯濛, 黄康俊, 沈冰. 镁同位素在“白云岩问题”研究中的应用及进展[J]. 岩石学报, 2018, 34(12): 3690-3708. |
[116] |
HIGGINS J A, SCHRAG D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5039-5053.
DOI URL |
[117] |
MEISTER P, MCKENZIE J A, BERNASCONI S M, et al. Dolomite formation in the shallow seas of the Alpine Triassic[J]. Sedimentology, 2013, 60(1): 270-291.
DOI URL |
[118] | RYAN B H, KACZMAREK S E, RIVERS J M. Early and pervasive dolomitization by near-normal marine fluids: new lessons from an Eocene evaporative setting in Qatar[J]. Sedimentology, 2020, 67(6): 2917-2944. |
[119] |
NGIA N R, HU M Y, GAO D. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 359-382.
DOI URL |
[120] |
WANG R, JONES B, YU K F. Island dolostones: genesis by time-transgressive or event dolomitization[J]. Sedimentary Geology, 2019, 390: 15-30.
DOI |
[121] |
KACZMAREK S E, SIBLEY D F. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites[J]. Sedimentary Geology, 2011, 240(1/2): 30-40.
DOI URL |
[122] |
DONG S F, CHEN D Z, ZHOU X Q, et al. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China[J]. Sedimentology, 2017, 64(4): 1079-1106.
DOI URL |
[123] |
NGIA N R, HU M Y, GAO D. Hydrocarbon reservoir development in reef and shoal complexes of the Lower Ordovician carbonate successions in the Tazhong Uplift in central Tarim Basin, NW China: constraints from microfacies characteristics and sequence stratigraphy[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(7): 2693-2720.
DOI |
[124] | FORD T D. Dolomitization of the Carboniferous limestone of the Peak District: a review[J]. Mercian Geologist, 2002, 15(3): 163-170. |
[125] |
HOU M C, JIANG W J, XING F C, et al. Origin of dolomites in the Cambrian (upper 3rd-Furongian) Formation, south-eastern Sichuan Basin, China[J]. Geofluids, 2016, 16(5): 856-876.
DOI URL |
[126] |
ZHANG S L, LV Z X, WEN Y, et al. Origins and geochemistry of Dolomites and their dissolution in the Middle Triassic Leikoupo Formation, western Sichuan Basin, China[J]. Minerals, 2018, 8(7): 289.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||