Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 376-388.DOI: 10.13745/j.esf.sf.2023.2.61
Previous Articles Next Articles
LI Wenqiang1,2(), XU Wei1,*(
), TIAN Shihong1,*(
)
Received:
2022-08-12
Revised:
2022-12-30
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
LI Wenqiang, XU Wei, TIAN Shihong. Lithospheric mantle metasomatized by oceanic crust-derived fluids: Li and Pb isotopic evidence from potassic volcanic rocks in the southern Qiangtang terrane, central Tibet[J]. Earth Science Frontiers, 2023, 30(4): 376-388.
Fig.1 (a) Tectonic framework of the Qinghai-Tibet Plateau, and (b) geological sketch map of the western segment of the southern Qiangtang terrane. Modified after [25].
Fig.3 Geochemical analysis of the Mendangle volcanic rocks from the southern Qiangtang terrane. A modified after [56-57]; b modified after [58]; c, d adapted from [59].
Fig.4 Whole-rock Sr-Nd-Pb-Li isotopic compositions of the Mendangle volcanic rock from the southern Qiangtang terrane. A-c adapted from [13,61⇓-63]; d adapted from [8,10,13].
地质体储层 组成 | w(Li)/10-6 | δ7Li/‰ | w(Pb)/10-6 | w(Nd)/10-6 | 143Nd/144Nd | 207Pb/204Pb | 208Pb/204Pb | w(Sr)/10-6 | 87Sr/86Sr |
---|---|---|---|---|---|---|---|---|---|
海洋沉积物 (SED) | 49a | -3.0b | 30d | 34f | 0.511 95f | 15.7b | 39.9c | 330b | 0.709 0b |
蚀变洋壳 (AOC) | 12b | 12.0c | 1b | 2.2b | 0.513 08b | 15.49b | 38.08e | 120d | 0.705 2g |
地幔(M) | 2b | 2.0b | 0.18b | 1.2b | 0.512 88b | 15.53b | 37.75c | 18.2b | 0.702 8b |
Table 2 End member compositions used in modeling
地质体储层 组成 | w(Li)/10-6 | δ7Li/‰ | w(Pb)/10-6 | w(Nd)/10-6 | 143Nd/144Nd | 207Pb/204Pb | 208Pb/204Pb | w(Sr)/10-6 | 87Sr/86Sr |
---|---|---|---|---|---|---|---|---|---|
海洋沉积物 (SED) | 49a | -3.0b | 30d | 34f | 0.511 95f | 15.7b | 39.9c | 330b | 0.709 0b |
蚀变洋壳 (AOC) | 12b | 12.0c | 1b | 2.2b | 0.513 08b | 15.49b | 38.08e | 120d | 0.705 2g |
地幔(M) | 2b | 2.0b | 0.18b | 1.2b | 0.512 88b | 15.53b | 37.75c | 18.2b | 0.702 8b |
[1] |
BERGER G, SCHOTT J, GUY C. Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigations and modelization between 50 ℃ and 300 ℃[J]. Chemical Geology, 1988, 71(4): 297-312.
DOI URL |
[2] |
SEYFRIED JR W E, CHEN X, CHAN L H. Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350 ℃, 500 bars[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 949-960.
DOI URL |
[3] |
FLESCH G D, ANDERSON JR A R, SVEC H J. A secondary isotopic standard for 6Li/7Li determinations[J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265-272.
DOI URL |
[4] |
JEFFCOATE A B, ELLIOTT T, THOMAS A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161-172.
DOI URL |
[5] | TOMASCAK P B, MAGNA T, DOHMEN R. Advances in lithium isotope geochemistry[M]. Cham, Switzerland: Springer International Publishing, 2016. |
[6] |
PENNISTON-DORLAND S, LIU X M, RUDNICK R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165-217.
DOI URL |
[7] |
RYAN J G, LANGMUIR C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1727-1741.
DOI URL |
[8] |
TOMASCAK P B, LANGMUIR C H, LE ROUX P J, et al. Lithium isotopes in global mid-ocean ridge basalts[J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1626-1637.
DOI URL |
[9] |
CHAN L H, EDMOND J M, THOMPSON G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans[J]. Earth and Planetary Science Letters, 1992, 108(1/2/3): 151-160.
DOI URL |
[10] |
CHAN L H, ALT J C, TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 2002, 201(1): 187-201.
DOI URL |
[11] | CHAN L H, LEEMAN W P, PLANK T. Lithium isotopic composition of marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6): Q06005. |
[12] |
BOUMAN C, ELLIOTT T, VROON P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1/2): 59-79.
DOI URL |
[13] | PLANK T. The chemical composition of subducting sediments[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 607-629. |
[14] |
AULBACH S, RUDNICK R L. Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania[J]. Chemical Geology, 2009, 258(1/2): 17-27.
DOI URL |
[15] |
VLASTÉLIC I, KOGA K, CHAUVEL C, et al. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 456-466.
DOI URL |
[16] |
ZHANG H F, DELOULE E, TANG Y J, et al. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 261-277.
DOI URL |
[17] |
TANG M, RUDNICK R L, CHAUVEL C. Sedimentary input to the source of Lesser Antilles lavas: a Li perspective[J]. Geochimica et Cosmochimica Acta, 2014, 144: 43-58.
DOI URL |
[18] |
MARSCHALL H R, VON STRANDMANN P A E P, SEITZ H M, et al. The lithium isotopic composition of orogenic eclogites and deep subducted slabs[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 563-580.
DOI URL |
[19] |
MARSCHALL H R, TANG M. High-temperature processes: is it time for lithium isotopes?[J]. Elements, 2020, 16(4): 247-252.
DOI URL |
[20] |
MORIGUTI T, NAKAMURA E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 167-174.
DOI URL |
[21] | BRENS JR R, LIU X M, TURNER S, et al. Lithium isotope variations in Tonga-Kermadec arc-Lau back-arc lavas and Deep Sea Drilling Project (DSDP) Site 204 sediments[J]. Island Arc, 2019, 28(1): e12276. |
[22] |
HALAMA R, MCDONOUGH W F, RUDNICK R L, et al. Tracking the lithium isotopic evolution of the mantle using carbonatites[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 726-742.
DOI URL |
[23] | WALKER J A, TEIPEL A P, RYAN J G, et al. Light elements and Li isotopes across the northern portion of the Central American subduction zone[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06S16. |
[24] |
TIAN S H, HOU Z Q, SU A, et al. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: enriched mantle source and petrogenesis[J]. Geochimica et Cosmochimica Acta, 2015, 159: 42-60.
DOI URL |
[25] | XU W, ROBERTO F W, TIAN S H, et al. K-rich adakite-like rocks in central Tibet: fractional crystallization of a hydrous, alkaline primitive melt[J]. Geophysical Research Letters, 2023, 50(10): e2022GL099887. |
[26] |
DING L, KAPP P, YUE Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 28-38.
DOI URL |
[27] | 刘建峰, 迟效国, 赵秀羽, 等. 青藏高原北部新生代走构油茶错、纳丁错火山岩年代学、地球化学特征及其构造意义[J]. 岩石学报, 2009, 25(12): 3259-3274. |
[28] |
GUO Z, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780.
DOI URL |
[29] |
QI Y, WANG Q, WEI G J, et al. Late Eocene post-collisional magmatic rocks from the southern Qiangtang terrane record the melting of pre-collisional enriched lithospheric mantle[J]. GSA Bulletin, 2021, 133(11/12): 2612-2624.
DOI URL |
[30] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[31] |
ZHAI Q G, ZHANG R Y, JAHN B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125(1/2): 173-189.
DOI URL |
[32] |
KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254.
DOI URL |
[33] |
TANG X C, ZHANG K J. Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2): 150-166.
DOI URL |
[34] |
DAN W, WANG Q, WHITE W M, et al. Rapid formation of eclogites during a nearly closed ocean: revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477: 112-122.
DOI URL |
[35] |
ZHANG X Z, DONG Y S, WANG Q, et al. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35(7): 1670-1686.
DOI URL |
[36] |
ZHAI Q G, JAHN B M, WANG J, et al. Oldest paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373.
DOI URL |
[37] | 李才, 程立人, 胡克, 等. 西藏龙木错-双湖古特提斯缝合带研究[M]. 北京: 地质出版社, 1995. |
[38] |
ZHAI Q G, JAHN B M, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168/169: 186-199.
DOI URL |
[39] |
KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22.
DOI URL |
[40] | KAPP P, YIN A, MANNING C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 200TC001383. |
[41] | HU P, ZHAI Q, JAHN B, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the Early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220/221/222/223: 318-338. |
[42] |
DAN W, WANG Q, ZHANG X Z, et al. Early Paleozoic S-type granites as the basement of southern Qiantang terrane, Tibet[J]. Lithos, 2020, 356/357: 105395.
DOI URL |
[43] | 李才, 和钟铧, 李惠民. 青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义[J]. 中国地质, 2004, 31(4): 384-389. |
[44] |
KAPP P, YIN A, HARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
DOI URL |
[45] |
LIU D L, HUANG Q S, FAN S Q, et al. Subduction of the Bangong-Nujiang ocean: constraints from granites in the Bangong Co area, Tibet[J]. Geological Journal, 2014, 49(2): 188-206.
DOI URL |
[46] |
LI S M, ZHU D C, WANG Q, et al. Northward subduction of Bangong-Nujiang Tethys: insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205: 284-297.
DOI URL |
[47] |
LI S M, ZHU D C, WANG Q, et al. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic[J]. Lithos, 2016, 262: 456-469.
DOI URL |
[48] |
HAO L L, WANG Q, WYMAN D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245: 223-242.
DOI URL |
[49] |
ZENG Y C, XU J F, LI M J, et al. Late Eocene two-pyroxene trachydacites from the southern Qiangtang terrane, central Tibetan Plateau: high-temperature melting of overthickened and dehydrated lower crust[J]. Journal of Petrology, 2022, 63(6): egac049.
DOI URL |
[50] |
WANG B D, CHEN J L, XU J F, et al. Chronology and geochemistry of the Nadingcuo volcanic rocks in the southern Qiangtang region of the Tibetan Plateau: partial melting of remnant ocean crust along the Bangong-Nujiang suture[J]. Acta Geologica Sinica (English Edition), 2010, 84(6): 1461-1473.
DOI URL |
[51] |
TIAN S H, HOU Z Q, MO X X, et al. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet[J]. Gondwana Research, 2020, 77: 168-183.
DOI URL |
[52] | 田世洪, 胡文洁, 侯增谦, 等. 拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因: Li同位素制约[J]. 矿床地质, 2012, 31(4): 791-812. |
[53] | 苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 地学前缘, 2011, 18(2): 835-836. |
[54] |
MILLOT R, GUERROT C, VIGIER N. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 153-159.
DOI URL |
[55] |
TIAN S H, HOU Z Q, SU A N, et al. Separation and precise measurement of lithium isotopes in three reference materials using multi collector-inductively coupled plasma mass spectrometry[J]. Acta Geologica Sinica (English Edition), 2012, 86(5): 1297-1305.
DOI URL |
[56] |
BAS M J L, MAITRE R W L, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750.
DOI URL |
[57] |
IRVINE T N, BARAGAR W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.
DOI URL |
[58] |
PECCERILLO A, TAYLOR S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
DOI URL |
[59] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[60] | PEARCE J. Role of the sub-continental lithosphere in magma genesis at active continental margins[M]// HAWKESWORTH C J, NORRYM J. Continental basalts and mantle xenoliths. Nantwich, UK: Shiva Publishing Ltd, 1983: 230-249. |
[61] |
MAHONEY J J, FREI R, TEJADA M L G, et al. Tracing the Indian Ocean mantle domain through time: isotopic results from Old West Indian, East Tethyan, and South Pacific seafloor[J]. Journal of Petrology, 1998, 39(7): 1285-1306.
DOI URL |
[62] |
ZHANG S Q, MAHONEY J J, MO X X, et al. Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics[J]. Journal of Petrology, 2005, 46(4): 829-858.
DOI URL |
[63] |
XU J F, CASTILLO P R. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain[J]. Tectonophysics, 2004, 393(1/2/3/4): 9-27.
DOI URL |
[64] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
DOI |
[65] |
TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.
DOI URL |
[66] | CHAN L H, FREY F A. Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii scientific drilling project and Koolau volcano[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 2002GC000365. |
[67] |
SCHUESSLER J A, SCHOENBERG R, SIGMARSSON O. Iron and lithium isotope systematics of the Hekla volcano, Iceland: evidence for Fe isotope fractionation during magma differentiation[J]. Chemical Geology, 2009, 258(1/2): 78-91.
DOI URL |
[68] |
RICHTER F M, DAVIS A M, DEPAOLO D J, et al. Isotope fractionation by chemical diffusion between molten basalt and rhyolite[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3905-3923.
DOI URL |
[69] |
LUNDSTROM C C, CHAUSSIDON M, HSUI A T, et al. Observations of Li isotopic variations in the Trinity ophiolite: evidence for isotopic fractionation by diffusion during mantle melting[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 735-751.
DOI URL |
[70] |
BECK P, CHAUSSIDON M, BARRAT J A, et al. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4813-4825.
DOI URL |
[71] |
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710.
DOI URL |
[72] |
ARNAUD N O, VIDAL P, TAPPONNIER P, et al. The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications[J]. Earth and Planetary Science Letters, 1992, 111(2/3/4): 351-367.
DOI URL |
[73] |
万红琼, 孙贺, 刘海洋, 等. 俯冲带Li同位素地球化学: 回顾与展望[J]. 地学前缘, 2015, 22(5): 29-43.
DOI |
[74] |
SIMONS K K, HARLOW G E, BRUECKNER H K, et al. Lithium isotopes in Guatemalan and Franciscan HP-LT rocks: insights into the role of sediment-derived fluids during subduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3621-3641.
DOI URL |
[75] |
LIU H, SUN H, XIAO Y, et al. Lithium isotope systematics of the Sumdo eclogite, Tibet: tracing fluid/rock interaction of subducted low-T altered oceanic crust[J]. Geochimica et Cosmochimica Acta, 2019, 246: 385-405.
DOI URL |
[76] |
LEEMAN W P, TONARINI S, CHAN L H, et al. Boron and lithium isotopic variations in a hot subduction zone: the southern Washington Cascades[J]. Chemical Geology, 2004, 212(1/2): 101-124.
DOI URL |
[77] |
MORIGUTI T, SHIBATA T, NAKAMURA E. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition[J]. Chemical Geology, 2004, 212(1/2): 81-100.
DOI URL |
[78] |
TAYLOR R N, NESBITT R W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin arc, Japan[J]. Earth and Planetary Science Letters, 1998, 164(1/2): 79-98.
DOI URL |
[79] |
MARSCHALL H R, WANLESS V D, SHIMIZU N, et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle[J]. Geochimica et Cosmochimica Acta, 2017, 207: 102-138.
DOI URL |
[1] | WANG Jian, Keiko H.Hattori, Charles R.Stern, LIU Jin-Lin. Behavior of platinumgroup elements during mantle metasomatism by asthenospheric melt. [J]. Earth Science Frontiers, 2010, 17(1): 164-176. |
[2] | YU Hua-Hui MO Xuan-Hua DIAO Zhi-Dan HUANG Hang-Kai LI Yong CHEN Yan-Fang HUI Yu-Fang. Two types of Cenozoic potassic volcanic rocks in West Qinling, Gansu Province: Their petrology, geochemistry and petrogenesis. [J]. Earth Science Frontiers, 2009, 16(2): 79-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||