Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 313-331.DOI: 10.13745/j.esf.sf.2024.9.5
Previous Articles Next Articles
GU Yu1,2(), WU Jun1,2,*(), FAN Tailiang1,2, LÜ Junling1,2
Received:
2024-06-17
Revised:
2024-08-13
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin[J]. Earth Science Frontiers, 2024, 31(5): 313-331.
Fig.3 Cumulative thickness statistics of different lithological types of the Lower-Middle Cambrian in the Wells TS5、TC1、LT1 and ZS1, North-central Tarim Basin
岩性组合类型 | 岩石类型 | 地震响应特征 |
---|---|---|
上下分段型 | 上部为白云岩类,以白云岩和灰质白云岩为主;下部为含泥白云岩类,主要由泥质白云岩和含泥白云岩组成 | 上部振幅较弱、较低频率、连续性中-差和亚平行反射;下部振幅较强、连续性中-好和平行反射 |
对称型 | 中部为白云岩类,上下部为含膏岩类或含泥白云岩类,主要为膏质白云岩、泥质白云岩和含泥白云岩 | 整体表现为“强夹弱”的特征,即上部和下部为中-强振幅、连续性较好的反射特征夹中部的弱振幅、连续性中等的反射特征 |
互层型 | 含膏岩类与白云岩类频繁互层,呈现“薄层多段”特征 | 整体表现为振幅较强、较高频率和连续性好 |
Table 1 Response characteristics of three types of lithological associations corresponding to seismic in the North-central Tarim Basin
岩性组合类型 | 岩石类型 | 地震响应特征 |
---|---|---|
上下分段型 | 上部为白云岩类,以白云岩和灰质白云岩为主;下部为含泥白云岩类,主要由泥质白云岩和含泥白云岩组成 | 上部振幅较弱、较低频率、连续性中-差和亚平行反射;下部振幅较强、连续性中-好和平行反射 |
对称型 | 中部为白云岩类,上下部为含膏岩类或含泥白云岩类,主要为膏质白云岩、泥质白云岩和含泥白云岩 | 整体表现为“强夹弱”的特征,即上部和下部为中-强振幅、连续性较好的反射特征夹中部的弱振幅、连续性中等的反射特征 |
互层型 | 含膏岩类与白云岩类频繁互层,呈现“薄层多段”特征 | 整体表现为振幅较强、较高频率和连续性好 |
Fig.7 Lithological associations and their corresponding seismic features in the North Tarim Basin, Central Tarim Basin and Shunbei block. The profile positions are shown in Fig.1.
Fig.8 Seismic reflection characteristics of different lithological associations of the Lower-Middle Cambrian in the North-central Tarim Basin. The profile positions are shown in Fig. 1.
Fig.11 Deformations under different stress segments of three lithological associations in the Lower-Middle Cambrian (blue circles on seismic profiles) and their corresponding geological models (yellow boxes) in the Shunbei block,Northern-central Tarim Basin
Fig.12 Distribution of stratum deformation degree under different stress segments for three lithological associations in the Northern section of Shunbei No.5 fault
Fig.13 Relationship between strata deformation with different stress segments and their productions of oil and gas in the Northern section of Shunbei No.5 fault
[1] | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. |
[2] |
林波, 张旭, 况安鹏, 等. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7): 906-923.
DOI |
[3] | 刘雨晴, 邓尚. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例[J]. 中国矿业大学学报, 2022, 51(1): 124-136. |
[4] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
DOI |
[5] | 古再丽努尔·艾尔肯, 曹自成, 耿锋, 等. 顺北1号走滑断裂带分段差异活动特征及其控藏效应[J]. 断块油气田, 2024, 31(4): 589-598. |
[6] |
郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238.
DOI |
[7] | 魏福军, 高志前, 樊太亮, 等. 塔里木盆地塔中地区输导体系及成藏效应[J]. 石油与天然气地质, 2007, 28(2): 266-273. |
[8] | 杨德彬, 朱光有, 苏劲, 等. 中国含油气盆地输导体系类型及其有效性评价[J]. 西南石油大学学报(自然科学版), 2011, 33(3): 8-17, 189-190. |
[9] | 马庆佑, 曹自成, 蒋华山, 等. 塔河-顺北地区走滑断裂带的通源性及其与油气富集的关系[J]. 海相油气地质, 2020, 25(4): 327-334. |
[10] | 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. |
[11] | 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. |
[12] | HUANG S M, PANG H, MA K Y, et al. Evolution of the hydrocarbon migration system of the Lower Enping Formation in the Pearl River estuary basin[J]. Geoenergy Science and Engineering, 2023, 222: 1-26. |
[13] | 汪洋, 张哨楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401 |
[14] | DAVIS T L, NAMSON J S. Field excursion: petroleum traps and structures along the San Andreas convergent strike-slip plate boundary, California[J]. AAPG Bulletin, 2017, 101(4): 607-615. |
[15] | LIU Y, SUPPE J, CAO Y C, et al. Linkage and formation of strike-slip faults in deep basins and the implications for petroleum accumulation: a case study from the Shunbei area of the Tarim Basin, China[J]. AAPG Bulletin, 2023, 107(2): 331-355. |
[16] | LIU Y, SUPPE J, CAO Y C, et al. Strike-slip fault zone architecture and its effect on fluid migration in deep-seated strata: insights from the Central Tarim Basin[J]. Basin Research, 2024, 36(3): 1-29. |
[17] | BIAN Q, DENG S, LIN H X, et al. Strike-slip salt tectonics in the Shuntuoguole Low Uplift, Tarim Basin, and the significance to petroleum exploration[J]. Marine and Petroleum Geology, 2022, 139: 1-13. |
[18] | 林波, 云露, 李海英, 等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质, 2021, 42(6): 1344-1353, 1400. |
[19] |
石书缘, 胡素云, 刘伟, 等. 深层古老碳酸盐岩-膏盐岩组合油气成藏特征[J]. 石油勘探与开发, 2024, 51(1): 48-61.
DOI |
[20] | 马奎, 胡素云, 王铜山, 等. 膏盐岩对碳酸盐层系油气成藏的影响及勘探领域分析[J]. 地质科技情报, 2016, 35(2): 169-176. |
[21] | 孙旭东, 郑求根, 郭兴伟, 等. 巴西桑托斯盆地构造演化与油气勘探前景[J]. 海洋地质前沿, 2021, 37(2): 37-45. |
[22] | 熊利平, 邬长武, 郭永强, 等. 巴西海上坎波斯与桑托斯盆地油气成藏特征对比研究[J]. 石油实验地质, 2013, 35(4): 419-425. |
[23] | FARIAS F, SZATMARI P, BAHNIUK A, et al. Evaporitic carbonates in the pre-salt of Santos Basin: genesis and tectonic implications[J]. Marine and Petroleum Geology, 2019, 105: 251-272. |
[24] | AMRI Z, MASROUHI A, NAJI C, et al. Mechanical relationship between strike-slip faulting and salt tectonics in thenorthern Tunisian Atlas: the Bir-El-Afou salt structure[J]. Journal of Structural Geology, 2022, 154: 1-20. |
[25] |
管树巍, 姜华, 鲁雪松, 等. 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报, 2022, 43(11): 1542-1557.
DOI |
[26] | 刘长磊, 张艺琼, 张永, 等. 塔北-塔中区域构造地质大剖面解析及古隆起成因新解[J]. 石油与天然气地质, 2018, 39(5): 1001-1010. |
[27] | 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221 |
[28] | 李传新, 王晓丰, 李本亮. 塔里木盆地塔中低凸起古生代断裂构造样式与成因探讨[J]. 地质学报, 2010, 84(12): 1727-1734. |
[29] | SUN Q Q, FAN T L, GAO Z Q, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 1-31. |
[30] | 曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. |
[31] | 彭军, 夏梦, 曹飞, 等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30. |
[32] | QIU H B, DENG S, CAO Z C, et al. The evolution of the complex anticlinal belt withcrosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38: 2087-2113. |
[33] | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前进[J]. 石油与天然气地质, 2018, 39(2): 207-216. |
[34] | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、 形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
[35] |
樊太亮, 高志前, 吴俊. 塔里木盆地深层碳酸盐岩建造-改造作用与多类型储层有序性分布[J]. 地学前缘, 2023, 30(4): 1-18.
DOI |
[36] | 田方磊, 彭妙, 韩俊, 等. 塔里木盆地中部深层-超深层地震波组特征及其地质意义[J]. 石油与天然气地质, 2021, 42(2): 354-369. |
[37] | CHEN J J, HE D F, TIAN F L, et al. Control of mechanical stratigraphy on the stratified style of strike-slip faults in the central Tarim Craton, NW China[J]. Tectonophysics, 2022, 830: 1-15. |
[38] | DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137 |
[39] | 韩晓影. 塔里木盆地塔中北坡走滑断层形成与演化研究[D]. 北京: 中国石油大学(北京), 2018. |
[40] | 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、 演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126. |
[41] | 苑雅轩. 顺北5号北段走滑断裂特征及其控储作用研究[D]. 北京: 中国地质大学(北京), 2020. |
[42] | 韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160 |
[43] |
韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310.
DOI |
[44] |
马德波, 邬光辉, 朱永峰, 等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1): 225-237.
DOI |
[45] | DOOLEY T P, SCHREURS G. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results[J]. Tectonophysics, 2012, 574: 1-71 |
[46] |
刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、 顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020, 25(3): 83-95.
DOI |
[1] | SHI Siyu, LI Bisong, LI Rangbin, ZOU Yutao. Typical strike-slip fault zones in southeastern Sichuan: Fault characteristics and potential for fault-controlled fractured vuggy reservoirs [J]. Earth Science Frontiers, 2024, 31(5): 288-300. |
[2] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[3] | LIU Yuqing, DENG Shang, ZHANG Jibiao, QIU Huabiao, HAN Jun, HE Songgao. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 95-109. |
[4] | LI Yingtao, DENG Shang, ZHANG Jibiao, LIN Huixi, LIU Yuqing, QIU Huabiao, HUANG Cheng, LIU Dawei, YAO Yili. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei [J]. Earth Science Frontiers, 2023, 30(6): 80-94. |
[5] | DUAN Jinbao, PAN Lei, SHI Siyu, JIANG Zhenxue, LI Pingping, ZOU Yutao, ZHANG Wenrui. Geometry, kinematic characteristics and evolution of No.15 strike-slip fault zone in Fuling area, eastern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 57-68. |
[6] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
[7] | ZENG Tao, FAN Rui, XIA Wenqian, ZOU Yutao, SHI Siyu. Formation and evolution of strike-slip fault zones in the eastern Sichuan Basin and identification and characterization of the fault zones: A case study of the Fuling area [J]. Earth Science Frontiers, 2023, 30(3): 366-385. |
[8] | GUAN Shuwei, LIANG Han, JIANG Hua, FU Xiaodong, GU Mingfeng, LEI Ming, CHEN Tao, YANG Rongjun. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures [J]. Earth Science Frontiers, 2022, 29(6): 252-264. |
[9] | WANG Qinghua, YANG Haijun, LI Yong, LÜ Xiuxiang, ZHANG Yintao, ZHANG Yanqiu, SUN Chong, OUYANG Siqi. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin—a reservoir model [J]. Earth Science Frontiers, 2022, 29(6): 239-251. |
[10] | ZHENG Herong, HU Zongquan, YUN Lu, LIN Huixi, DENG Shang, JIA Huichong, PU Yong. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation [J]. Earth Science Frontiers, 2022, 29(6): 224-238. |
[11] | FENG Zhiqiang, LI Meng, GUO Yuanling, LIU Guangxiang. Genetic analysis of typical strike-slip faults and related basins in China [J]. Earth Science Frontiers, 2022, 29(6): 206-223. |
[12] | BIAN Baoli,ZHANG Jingkun,WU Junjun,LI Zonghao,WANG Yan,CAO Jian. Re-characterization of the Dazhuluogou strike-slip fault in northwestern Junggar Basin and the implications for hydrocarbon accumulation [J]. Earth Science Frontiers, 2019, 26(1): 238-247. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||