Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 130-138.DOI: 10.13745/j.esf.sf.2024.6.20
Previous Articles Next Articles
JU Wei1,2(), YANG Hui1,2, HOU Guiting3, NING Weike1,2, LI Yongkang1,2, LIANG Xiaobai1,2
Received:
2023-11-15
Revised:
2024-04-18
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones[J]. Earth Science Frontiers, 2024, 31(5): 130-138.
Fig.3 Relationship between fracture density and the distance to fault by geological observation (a) and theoretical analysis (b) on natural fractures controlled by the Tuerlike River thrust fault
Fig.6 Relationship between fracture density and distance to fault by theoretical analysis on nature fractures controlled by the Kudong high-angle oblique fault
地层 | ρ/(g·cm-3) | E/GPa | v | φ/(°) | ψ/(°) | C0/MPa |
---|---|---|---|---|---|---|
N2k | 2.22 | 10.72 | 0.25 | 23 | 11.50 | 12.00 |
N1-2k | 2.25 | 18.23 | 0.24 | 25 | 12.50 | 12.80 |
N1j | 2.25 | 18.23 | 0.24 | 25 | 12.50 | 12.80 |
E | 2.08 | 5.82 | 0.31 | 20 | 10.00 | 9.80 |
T-K | 2.35 | 26.62 | 0.23 | 32 | 16.00 | 16.00 |
基底 | 2.40 | 30.81 | 0.19 | 35 | 17.50 | 17.00 |
Table 1 Parameters used in finite element modeling
地层 | ρ/(g·cm-3) | E/GPa | v | φ/(°) | ψ/(°) | C0/MPa |
---|---|---|---|---|---|---|
N2k | 2.22 | 10.72 | 0.25 | 23 | 11.50 | 12.00 |
N1-2k | 2.25 | 18.23 | 0.24 | 25 | 12.50 | 12.80 |
N1j | 2.25 | 18.23 | 0.24 | 25 | 12.50 | 12.80 |
E | 2.08 | 5.82 | 0.31 | 20 | 10.00 | 9.80 |
T-K | 2.35 | 26.62 | 0.23 | 32 | 16.00 | 16.00 |
基底 | 2.40 | 30.81 | 0.19 | 35 | 17.50 | 17.00 |
断层名称 | 断层性质 | 断距或滑距/m | 断层强控制裂缝带宽度/m | K |
---|---|---|---|---|
塔拉克断层 | 逆冲-走滑断层 | 1 000 | 150 | 0.150 |
阿格断层 | 逆冲-走滑断层 | 280 | 40 | 0.143 |
库东断层 | 调节走滑断层 | 20 | 2.5 | 0.125 |
阳霞煤矿断层 | 逆冲断层 | 1.0 | 1.5 | 1.500 |
吐格尔明断层 | 逆冲断层 | 0.5 | 0.8 | 1.600 |
克孜勒努尔沟断层I | 逆冲断层 | 20 | 30 | 1.500 |
克孜勒努尔沟断层II | 逆冲断层 | 15 | 27 | 1.800 |
吐尔力克河断层 | 逆冲断层 | 32 | 50 | 1.563 |
Table 2 Calculated fault-controlled fracture coefficient (K) values for oblique thrust faults and thrust faults in the Kuqa depression
断层名称 | 断层性质 | 断距或滑距/m | 断层强控制裂缝带宽度/m | K |
---|---|---|---|---|
塔拉克断层 | 逆冲-走滑断层 | 1 000 | 150 | 0.150 |
阿格断层 | 逆冲-走滑断层 | 280 | 40 | 0.143 |
库东断层 | 调节走滑断层 | 20 | 2.5 | 0.125 |
阳霞煤矿断层 | 逆冲断层 | 1.0 | 1.5 | 1.500 |
吐格尔明断层 | 逆冲断层 | 0.5 | 0.8 | 1.600 |
克孜勒努尔沟断层I | 逆冲断层 | 20 | 30 | 1.500 |
克孜勒努尔沟断层II | 逆冲断层 | 15 | 27 | 1.800 |
吐尔力克河断层 | 逆冲断层 | 32 | 50 | 1.563 |
Fig.8 Proposed development and distribution patterns of fractures controlled by strike-slip faults and thrust faults in the complex structural deformation zones, Kuqa depression
[1] | 田军, 杨海军, 吴超, 等. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J]. 天然气工业, 2020, 40(1): 11-19. |
[2] |
黄少英, 杨文静, 卢玉红, 等. 塔里木盆地天然气地质条件、 资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.
DOI |
[3] |
徐珂, 杨海军, 张辉, 等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探, 2022, 27(5): 106-115.
DOI |
[4] | 杨学文, 田军, 王清华, 等. 塔里木盆地超深层油气地质认识与有利勘探领域[J]. 中国石油勘探, 2021, 26(4): 17-28. |
[5] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜-大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[6] | 鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602. |
[7] | 巩磊, 程宇琪, 高帅, 等. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素[J]. 地球科学, 2023, 48(7): 2475-2488. |
[8] | HENNINGS P H, OLSON J E, THOMPSON L B. Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs: an example from Wyoming[J]. AAPG Bulletin, 2000, 84: 830-849. |
[9] | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
[10] |
鞠玮, 侯贵廷, 冯胜斌, 等. 鄂尔多斯盆地庆城-合水地区延长组长63储层构造裂缝定量预测[J]. 地学前缘, 2014, 21(6): 310-320.
DOI |
[11] | 唐雁刚, 周鹏, 徐振平, 等. 应力环境对克拉苏构造带盐下储层的影响[J]. 高校地质学报, 2017, 23(1): 95-103. |
[12] | 孙雄伟, 侯贵廷, 于璇, 等. 库车前陆冲断带低渗砂岩的裂缝发育模式[J]. 大地构造与成矿学, 2015, 39(5): 808-815. |
[13] | 潘文庆, 侯贵廷, 齐英敏, 等. 碳酸盐岩构造裂缝发育模式探讨[J]. 地学前缘, 2013, 20(5): 188-195. |
[14] | 鞠玮, 侯贵廷, 黄少英, 等. 断层相关褶皱对砂岩构造裂缝发育的控制约束[J]. 高校地质学报, 2014, 20(1): 105-113. |
[15] | MAO Z, ZENG L B, LIU G D, et al. Controls of fault-bend fold on natural fractures: insight from discrete element simulation and outcrops in the southern margin of the Junggar Basin, western China[J]. Marine and Petroleum Geology, 2022, 138: 105541. |
[16] | JU W, HOU G T, ZHANG B. Insights into the damagezones in fault-bend folds from geomechanical models and field data[J]. Tectonophysics, 2014, 610: 182-194. |
[17] | 刘国平. 准噶尔盆地南缘前陆冲断带深部裂缝储层发育模式[D]. 北京: 中国石油大学(北京), 2020: 1-149. |
[18] | KIM I, PARK S I, KWON S, et al. Evolution of fracture networks and connectivity during fault-bend folding: insights from the Sinon Anticline in the southwestern Hongseong-Imjingang Belt, Korea[J]. Journal of Structural Geology, 2022, 155: 104506. |
[19] | 李涛, 王宗秀. 塔里木地块北部横向构造及断条模式[J]. 中国地质, 2006, 33(1): 14-27. |
[20] | 吴晓智, 李佰华, 吕修祥, 等. 库车前陆盆地走滑断裂形成机理及其对油气的控制[J]. 新疆石油地质, 2010, 31(2): 118-121. |
[21] | 杨克基, 漆家福, 刘傲然, 等. 库车坳陷中段基底断裂特征及其对盐构造变形的影响[J]. 地质科学, 2022, 57(4): 991-1008. |
[22] | BROGI A. Variation in fracture patterns in damage zones related to strike-slip faults interfering with pre-existing fractures in sandstone (Calcione area, southern Tuscany, Italy)[J]. Journal of Structural Geology, 2011, 33(4): 644-661. |
[23] |
王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2): 153-166.
DOI |
[24] |
田作基, 宋建国. 塔里木库车新生代前陆盆地构造特征及形成演化[J]. 石油学报, 1999, 20(4): 7-13.
DOI |
[25] | JU W, ZHONG Y, LIANG Y, et al. Factors influencing fault-propagation folding in the Kuqa depression: insights from geomechanical models[J]. Journal of Structural Geology, 2023, 168: 104826. |
[26] | 王珂, 张荣虎, 曾庆鲁, 等. 库车坳陷博孜-大北地区下白垩统深层-超深层储层特征及成因机制[J]. 中国矿业大学学报, 2022, 51(2): 311-328. |
[27] | 王珂, 张荣虎, 王俊鹏, 等. 超深层致密砂岩储层构造裂缝分布特征及其成因: 以塔里木盆地库车前陆冲断带克深气田为例[J]. 石油与天然气地质, 2021, 42(2): 338-353. |
[28] | 罗世伟. 库车坳陷克拉苏富油气区构造研究[D]. 西安: 西安石油大学, 2019. |
[1] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[2] | SHI Siyu, LI Bisong, LI Rangbin, ZOU Yutao. Typical strike-slip fault zones in southeastern Sichuan: Fault characteristics and potential for fault-controlled fractured vuggy reservoirs [J]. Earth Science Frontiers, 2024, 31(5): 288-300. |
[3] | XU Ke, LIU Jingshou, ZHANG Hui, ZHANG Guanjie, ZHANG Binxin, WANG Haiying, ZHANG Yu, LAI Shujun, QIAN Ziwei, QIANG Jianli. Geological and engineering applications of full-stratum geomechanical modeling in complex structural areas [J]. Earth Science Frontiers, 2024, 31(5): 195-208. |
[4] | LIU Yuqing, DENG Shang, ZHANG Jibiao, QIU Huabiao, HAN Jun, HE Songgao. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 95-109. |
[5] | LI Yingtao, DENG Shang, ZHANG Jibiao, LIN Huixi, LIU Yuqing, QIU Huabiao, HUANG Cheng, LIU Dawei, YAO Yili. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei [J]. Earth Science Frontiers, 2023, 30(6): 80-94. |
[6] | DUAN Jinbao, PAN Lei, SHI Siyu, JIANG Zhenxue, LI Pingping, ZOU Yutao, ZHANG Wenrui. Geometry, kinematic characteristics and evolution of No.15 strike-slip fault zone in Fuling area, eastern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 57-68. |
[7] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
[8] | ZENG Tao, FAN Rui, XIA Wenqian, ZOU Yutao, SHI Siyu. Formation and evolution of strike-slip fault zones in the eastern Sichuan Basin and identification and characterization of the fault zones: A case study of the Fuling area [J]. Earth Science Frontiers, 2023, 30(3): 366-385. |
[9] | GUAN Shuwei, LIANG Han, JIANG Hua, FU Xiaodong, GU Mingfeng, LEI Ming, CHEN Tao, YANG Rongjun. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures [J]. Earth Science Frontiers, 2022, 29(6): 252-264. |
[10] | WANG Qinghua, YANG Haijun, LI Yong, LÜ Xiuxiang, ZHANG Yintao, ZHANG Yanqiu, SUN Chong, OUYANG Siqi. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin—a reservoir model [J]. Earth Science Frontiers, 2022, 29(6): 239-251. |
[11] | ZHENG Herong, HU Zongquan, YUN Lu, LIN Huixi, DENG Shang, JIA Huichong, PU Yong. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation [J]. Earth Science Frontiers, 2022, 29(6): 224-238. |
[12] | FENG Zhiqiang, LI Meng, GUO Yuanling, LIU Guangxiang. Genetic analysis of typical strike-slip faults and related basins in China [J]. Earth Science Frontiers, 2022, 29(6): 206-223. |
[13] | BIAN Baoli,ZHANG Jingkun,WU Junjun,LI Zonghao,WANG Yan,CAO Jian. Re-characterization of the Dazhuluogou strike-slip fault in northwestern Junggar Basin and the implications for hydrocarbon accumulation [J]. Earth Science Frontiers, 2019, 26(1): 238-247. |
[14] | ZHANG Liqiang,YAN Yiming,LUO Xiaorong,WANG Zhenbiao,ZHANG Haizu. Diagenetic differences of tight sandstone of the Lower Jurassic Ahe Formation in the Yiqikelike Area of the Kuqa Depression, Tarim Basin. [J]. Earth Science Frontiers, 2018, 25(2): 170-178. |
[15] | . [J]. Earth Science Frontiers, 2007, 14(6): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||