Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 239-266.DOI: 10.13745/j.esf.sf.2024.1.40
Previous Articles Next Articles
YANG Liqiang1,2,3,4(), YANG Wei1, ZHANG Liang1, GAO Xue1, SHEN Shilong1, WANG Sirui1,5, XU Hantao1, JIA Xiaochen1,4, DENG Jun1,2,3,4
Received:
2023-11-07
Revised:
2023-12-21
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications[J]. Earth Science Frontiers, 2024, 31(1): 239-266.
Fig.4 Modes of structure-fluid coupling. (a) Gold-bearing quartz veins formed by “fault-valve” mode coupling (adapted from [70]). (b) Fracture enlargement due to “suction-pump” mode coupling (adapted from [11]). (c) “Suction-pump” mode (adapted from [33]). (d) “Fault-valve” mode (adapted from [33]). (e) “Periodic crack-seal” mode (adapted from [163]).
Fig.6 Topographic analysis of fault network. (a) Three-terminal graph of nodes (modified from [228]). (b) Three-terminal graph of splay (modified from [232]).
Fig.7 Fluid pathway analysis. (a) Structural patterns of ductile and brittle shear zones, fractures and veins formed under different structural systems (modified from [239]). (b) Generic Mohr diagram normalized to T (tensile strength) to show the different failure mode conditions (modified from [239⇓-241]). (c) Radial failure mode of dextral single shear (modified from [242-243]). (d) Possible ore-bearing vein spaces in Radial fracture network of shear zones (modified from [242-243]).
Fig.9 Distribution of Coulomb stress changes in the Jiaojia gold field (a) and 28 high permeability areas (outlined by dotted lines) (b). Adapted from [266].
[1] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13-27. |
[2] | WYBORN L A I, GALLAGHER R, JAQUES A L, et al. Developing metallogenic geographic information systems: examples from Mount Isa, Kakadu and Pine Creek[C]// Proceedings of the Australasian Institute of Mining and Metallurgy Annual Conference, Darwin. 1994, 1: 129-133. |
[3] | 翟裕生. 成矿系统论[M]. 北京: 地质出版社, 2010: 313. |
[4] | MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Applied Earth Science IMM Transactions Section B, 2014, 18(2): 153-175. |
[5] |
WYMAN D A, CASSIDY K F, HOLLINGS P. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy[J]. Ore Geology Review, 2016, 78: 322-335.
DOI URL |
[6] |
ZHAO C, HOBBS B E, MÜHLHAUS H B, et al. Computer simulations of coupled problems in geological and geochemical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(29/30): 3137-3152.
DOI URL |
[7] |
ORD A, HOBBS B E, LESTER D R. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors[J]. Ore Geology Reviews, 2012, 49: 1-44.
DOI URL |
[8] | 翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 214. |
[9] | 陈国达. 成矿构造研究法[M]. 北京: 地质出版社, 1978: 413. |
[10] |
SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural geology, 1996, 18(8): 1031-1042.
DOI URL |
[11] |
NGUYEN P T, HARRIS L B, POWELL C M, et al. Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia[J]. Journal of Structural Geology, 1998, 20(12): 1625-1640.
DOI URL |
[12] | 邓军, 翟裕生, 杨立强, 等. 剪切带构造-流体-成矿系统动力学模拟[J]. 地学前缘, 1999, 6(1): 115-127. |
[13] | 邓军, 杨立强, 翟裕生, 等. 构造-流体-成矿系统及其动力学的理论格架与方法体系[J]. 地球科学: 中国地质大学学报, 2000, 25(1): 71-78. |
[14] | 杨立强, 王光杰, 张中杰. 胶东金矿集中区岩石圈结构与深部成矿作用[J]. 地球科学: 中国地质大学学报, 2000, 25(4): 421-427. |
[15] |
ZHANG S, COX S F. Enhancement of fluid permeability during shear deformation of a synthetic mud[J]. Journal of Structural Geology, 2000, 22(10): 1385-1393.
DOI URL |
[16] |
DENG J, YANG L Q, SUN Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica (English Edition), 2003, 77(4): 537-546.
DOI URL |
[17] |
BLENKINSOP T G. Orebody geometry in lode gold deposits from Zimbabwe: implications for fluid flow, deformation and mineralization[J]. Journal of Structural Geology, 2004, 26(6/7): 1293-1301.
DOI URL |
[18] | YANG L Q, DENG J, WANG J G, et al. Control of deep tectonics on the superlarge deposits in China[J]. Acta Geologies Sinica (English Edition), 2004, 78(2): 358-367. |
[19] | 邓军, 陈玉民, 刘钦, 等. 胶东三山岛断裂带金成矿系统与资源勘查[M]. 北京: 地质出版社, 2010: 371. |
[20] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[21] |
YANG L Q, DENG J, QIU K F, et al. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics[J]. Journal of Asian Earth Sciences, 2015, 98: 320-341.
DOI URL |
[22] | 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. |
[23] |
DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong gold province, China[J]. Geological Journal, 2019, 54(1): 378-391.
DOI URL |
[24] |
YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339.
DOI URL |
[25] | PETERS S G. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits[R]// Open-file report, 2001-151. Reston: US Geological Survey, 2001: 40. |
[26] | 韩润生. 初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J]. 地质与勘探, 2003, 39(1): 5-9. |
[27] |
CHAUVET A. Structural control of ore deposits: the role of pre-existing structures on the formation of mineralised vein systems[J]. Minerals, 2019, 9(1): 56.
DOI URL |
[28] |
DENG J, WANG Q, LIU X, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820.
DOI URL |
[29] |
DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, eastern China[J]. Science China Earth Sciences, 2023, 66(10): 1-24.
DOI |
[30] |
SUN Z, WANG P, DENG J, et al. Composite metallogenic systems in the Weihai area of Shandong and evolution of continental dynamic regimes[J]. Acta Geologica Sinica (English Edition), 2007, 81(2): 312-321.
DOI URL |
[31] | ABDELRAZEK M, BENEDICTO A, FAYEK M, et al. Permeability network, alteration and mineralization of the Spitfire basement-hosted uranium prospect, Western Athabasca, Canada[C]// Life with ore deposits on Earth. Proceedings of the 15th SGA biennial meeting, 2019, Vols 1/2/3/4. Glasgow:University of Glasgow, 2019: 1175-1178. |
[32] |
ZHANG L, WEINBERG R F, YANG L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: a focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441.
DOI URL |
[33] |
SIBSON R H, ROBERT F, POULSEN K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16(6): 551-555.
DOI URL |
[34] |
WILKINSON J J, JOHNSTON J D. Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation[J]. Geology, 1996, 24(5): 395-398.
DOI URL |
[35] |
MICKLETHWAITE S, COX S F. Fault-segment rupture, aftershock-zone fluid flow, and mineralization[J]. Geology, 2004, 32(9): 813-816.
DOI URL |
[36] |
GHISETTI F C, SIBSON R H. Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?[J]. Journal of Structural Geology, 2006, 28(11): 1994-2010.
DOI URL |
[37] |
GHISETTI F C, SIBSON R H. Erratum to “Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?”[J]. Journal of Structural Geology, 2007, 29(5): 918-920.
DOI URL |
[38] |
COX S F. Injection-driven swarm seismicity and permeability enhancement: implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes: an invited paper[J]. Economic Geology, 2016, 111(3): 559-587.
DOI URL |
[39] | 王义天, 毛景文, 李晓峰, 等. 与剪切带相关的金成矿作用[J]. 地学前缘, 2004, 11(2): 393-400. |
[40] |
PETERSON E C, MAVROGENES J A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea[J]. Geology, 2014, 42(5): 383-386.
DOI URL |
[41] |
WEATHERLEY D K, HENLEY R W. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 2013, 6(4): 294-298.
DOI |
[42] |
SANCHEZ-ALFARO P, REICH M, DRIESNER T, et al. The optimal windows for seismically-enhanced gold precipitation in the epithermal environment[J]. Ore Geology Reviews, 2016, 79: 463-473.
DOI URL |
[43] |
WILLIAMS J N, TOY V G, SMITH S A F, et al. Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault[J]. Journal of Structural Geology, 2017, 103: 151-166.
DOI URL |
[44] |
COX S F, RUMING K. The St Ives mesothermal gold system, western Australia: a case of golden after-shocks?[J]. Journal of Structural Geology, 2004, 26(6/7): 1109-1125.
DOI URL |
[45] | 王偲瑞. 胶西北金矿床构造-流体成矿动力学[D]. 北京: 中国地质大学(北京), 2020. |
[46] |
BONS P D, ELBURG M A, GOMEZ-RIVAS E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33-62.
DOI URL |
[47] |
GROVES D I, SANTOSH M, MÜLLER D, et al. Mineral systems: their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration[J]. Geosystems and Geoenvironment, 2022, 1(1): 100001.
DOI URL |
[48] | VEARNCOMBE J, ZELIC M. Structural paradigms for gold: do they help us find and mine?[J]. Applied Earth Science, Taylor & Francis, 2015, 124(1): 2-19. |
[49] | STREIT J E, COX S F. Fluid pressures at hypocenters of moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B2): 2235-2243. |
[50] | COX S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 39-76. |
[51] |
MICKLETHWAITE S, SHELDON H A, BAKER T. Active fault and shear processes and their implications for mineral deposit formation and discovery[J]. Journal of Structural Geology, 2010, 32(2): 151-165.
DOI URL |
[52] | 池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18. |
[53] |
INGEBRITSEN S E, APPOLD M S. The physical hydrogeology of ore deposits[J]. Economic Geology, 2012, 107(4): 559-584.
DOI URL |
[54] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114): 1613-1616.
DOI PMID |
[55] |
WEIS P, DRIESNER T, COUMOU D, et al. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison[J]. Geofluids, 2014, 14(3): 347-371.
DOI URL |
[56] | 江小军, 王忠强, 李超, 等. 滇东北会泽超大型铅锌矿Re-Os同位素特征及喜山期成矿作用动力学背景探讨[J]. 岩矿测试, 2018, 37(4): 448-461. |
[57] | 陈世清. 对称经济学[M]. 北京: 中国时代经济出版社, 2010: 224. |
[58] |
HOBBS B E, ORD A, REGENAUER-LIEB K. The thermodynamics of deformed metamorphic rocks: a review[J]. Journal of Structural Geology, 2011, 33(5): 758-818.
DOI URL |
[59] |
LESTER D R, ORD A, HOBBS B E. The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions[J]. Ore Geology Reviews, 2012, 49: 45-71.
DOI URL |
[60] |
FAZEL E T, PAŠAVA J, WILKE F D H, et al. Source of gold and ore-forming processes in the Zarshuran gold deposit, NW Iran: insights from in situ elemental and sulfur isotopic compositions of pyrite, fluid inclusions, and O-H isotopes[J]. Ore Geology Reviews, 2023, 156: 105382.
DOI URL |
[61] |
JOLLEY S J, FREEMAN S R, BARNICOAT A C, et al. Structural controls on Witwatersrand gold mineralisation[J]. Journal of Structural Geology, 2004, 26(6/7): 1067-1086.
DOI URL |
[62] |
GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.
DOI URL |
[63] |
QIU Y M, GROVES D I, MCNAUGHTON N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China Craton, China[J]. Mineralium Deposita, 2002, 37: 283-305.
DOI URL |
[64] |
GUO P, SANTOSH M, LI S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24(3/4): 1172-1202.
DOI URL |
[65] |
YU G P, XU T, AI Y S, et al. Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula, eastern North China Craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 2020, 789: 228532.
DOI URL |
[66] |
YANG L Q. Editorial for special issue “Polymetallic metallogenic system”[J]. Minerals, 2019, 9(7): 435.
DOI URL |
[67] | DENG J, WANG Q F, SUN X, et al. Tibetan ore deposits: a conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 2022: 104245. |
[68] |
YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the Giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602.
DOI URL |
[69] |
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the Giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
DOI URL |
[70] | COX S F. The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020, 21: 25-82. |
[71] | 赵海, 赵可广, 马耀丽, 等. 胶东新城金矿地质构造特征及深部找矿方向[J]. 地质力学学报, 2004, 10(2): 129-136. |
[72] | 陆丽娜, 范宏瑞, 胡芳芳, 等. 胶西北新城金矿成矿流体与矿床成因[J]. 矿床地质, 2011, 30(3): 522-532. |
[73] | 宋明春, 宋英昕, 崔书学, 等. 胶东焦家特大型金矿床深、浅部矿体特征对比[J]. 矿床地质, 2011, 30(5): 923-932. |
[74] | 陈耀煌, 孙华山, 罗辉隆. 胶西北上庄金矿断裂岩体控矿规律[J]. 地质科技情报, 2012, 31(4): 55-60. |
[75] | 卫清, 范宏瑞, 蓝廷广, 等. 胶东寺庄金矿床成因: 流体包裹体与石英溶解度证据[J]. 岩石学报, 2015, 31(4): 1049-1062. |
[76] | 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710. |
[77] | 宋明春, 宋英昕, 丁正江, 等. 胶东焦家和三山岛巨型金矿床的发现及有关问题讨论[J]. 大地构造与成矿学, 2019, 43(1): 92-110. |
[78] | 魏瑜吉, 邱昆峰, 郭林楠, 等. 胶东大尹格庄金矿床成矿流体特征与演化[J]. 岩石学报, 2020, 36(6): 1821-1832. |
[79] | 杨喜安, 赵国春, 宋玉波, 等. 胶东牟平-乳山成矿带拆离断层控矿特征及找矿方向[J]. 大地构造与成矿学, 2011, 35(3): 339-347. |
[80] |
CHEN B H, DENG J, JI X Z. Time limit of gold mineralization in Muping-Rushan belt, eastern Jiaodong Peninsula, China: evidence from muscovite Ar-Ar dating[J]. Minerals, 2022, 12(3): 278.
DOI URL |
[81] |
YAN Y T, ZHANG N, LI S R, et al. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, eastern China[J]. Geoscience Frontiers, 2014, 5(2): 205-213.
DOI URL |
[82] | 李经纬, 邱昆峰, 马明, 等. 胶东旧店金矿床赋矿岩浆岩岩石成因及其地质意义[J]. 岩石学报, 2023, 39(2): 393-410. |
[83] | 邹为雷, 沈远超, 曾庆栋, 等. 蓬家夼金矿与发云夼金矿地质地球化学特征对比研究: 兼议层间滑动角砾岩型金矿成矿模式[J]. 黄金, 2001(3): 1-7. |
[84] | 李国华, 丁正江, 宋明春, 等. 胶东新类型金矿: 辽上黄铁矿碳酸盐脉型金矿[J]. 地球学报, 2017, 38(3): 423-429. |
[85] | 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. |
[86] | 阿尔伯特ALBERT N N. 胶东平里店金矿床地质-地球化学特征[D]. 北京: 中国地质大学(北京), 2016. |
[87] | 贾飞, 胡跃亮, 王永锋, 等. 基于Vulcan软件的山东莱州留村金矿区三维建模及资源量估值[J]. 地质与勘探, 2022, 58(1): 12-23. |
[88] | 宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365-383. |
[89] | 宋明春, 杨立强, 范宏瑞, 等. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报, 2022, 41(6): 903-935. |
[90] | 宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18. |
[91] | ROBERT F, POULSEN K H. Vein formation and deformation in greenstone gold deposits[J]. Society of Economic Geologists Review, 2001, 14: 111-155. |
[92] | BLENKINSOP T G, OLIVER N H S, DIRKS P G H M, et al. Structural geology applied to the evaluation of hydrothermal gold deposits[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020: 1-23. |
[93] | TAYLOR W L, POLLARD D D, AYDIN A. Fluid flow in discrete joint sets: field observations and numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28983-29006. |
[94] | MATTHÄI S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix[J]. Geophysical Research Letters, 2004, 31(7): 221-237. |
[95] | SINGHAL B B S, GUPTA R P. Applied hydrogeology of fractured rocks[M]. 2nd ed. Berlin: Springer Science & Business Media, 2010: 414. |
[96] |
KOLB J, ROGERS A, MEYER F M, et al. Development of fluid conduits in the auriferous shear zones of the Hutti gold mine, India: evidence for spatially and temporally heterogeneous fluid flow[J]. Tectonophysics, 2004, 378(1/2): 65-84.
DOI URL |
[97] |
HICKEY K A, AHMED A D, BARKER S L L, et al. Fault-controlled lateral fluid flow underneath and into a Carlin-type gold deposit: isotopic and geochemical footprints[J]. Economic Geology, 2014, 109(5): 1431-1460.
DOI URL |
[98] |
ARANCIBIA G, FUJITA K, HOSHINO K, et al. Hydrothermal alteration in an exhumed crustal fault zone: testing geochemical mobility in the Caleta Coloso fault, Atacama fault system, northern Chile[J]. Tectonophysics, 2014, 623: 147-168.
DOI URL |
[99] |
CHI G X, XUE C J. An overview of hydrodynamic studies of mineralization[J]. Geoscience Frontiers, 2011, 2(3): 423-438.
DOI URL |
[100] |
MICKLETHWAITE S, FORD A, WITT W, et al. The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation[J]. Geofluids, 2015, 15(1/2): 240-251.
DOI URL |
[101] |
WIBBERLEY C A J, SHIPTON Z K. Fault zones: a complex issue[J]. Journal of Structural Geology, 2010, 32(11): 1554-1556.
DOI URL |
[102] | 陈小龙, 吕古贤, 唐朝永, 等. 显微构造研究在新城金矿成矿深度测算中的应用[J]. 大地构造与成矿学, 2011, 35(4): 612-617. |
[103] | CATHLES L M, ADAMS J J. Fluid flow and petroleum and mineral resources in the upper (< 20 km) continental crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundered anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 77-110. |
[104] |
SODEN A M, SHIPTON Z K, LUNN R J, et al. Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks[J]. Journal of the Geological Society, 2014, 171(4): 509-524.
DOI URL |
[105] |
CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028.
DOI URL |
[106] |
INGEBRITSON S E, GLEESON T. Crustal permeability: introduction to the special issue[J]. Geofluids, 2015, 15(1/2): 1-10.
DOI URL |
[107] |
SHIPTON Z K, COWIE P A. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J]. Journal of Structural Geology, 2003, 25(3): 333-344.
DOI URL |
[108] |
SAFFER D M. The permeability of active subduction plate boundary faults[J]. Geofluids, 2015, 15(1/2): 193-215.
DOI URL |
[109] |
FOROOZAN R, ELSWORTH D, FLEMINGS P, et al. The role of permeability evolution in fault zones on the structural and hydro-mechanical characteristics of shortening basins[J]. Marine and Petroleum Geology, 2012, 29(1): 143-151.
DOI URL |
[110] |
GABOURY D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments? Insight from volatiles in fluid inclusions[J]. Geology, 2013, 41(12): 1207-1210.
DOI URL |
[111] | SELVARAJA V, CARUSO S, FIORENTINI M L, et al. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia[J]. Geology, 2017, 45(8): 691-694. |
[112] |
XUE Y X, CAMPBELL I, IRELAND T R, et al. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology, 2013, 41(7): 791-794.
DOI URL |
[113] |
LARGE S J E, BAKKER E Y N, WEIS P, et al. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend[J]. Geology, 2016, 44(12): 1015-1018.
DOI URL |
[114] |
LEE C T A. Copper conundrums[J]. Nature Geoscience, 2014, 7(1): 10-11.
DOI |
[115] |
HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566.
DOI URL |
[116] | HOU Z Q, XU B, ZHANG H J, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4(1): 293. |
[117] |
WEBBER A P, ROBERTS S, TAYLOR R N, et al. Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction[J]. Geology, 2013, 41(1): 87-90.
DOI URL |
[118] |
HOU Z Q, WANG Q F, ZHANG H J, et al. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits[J]. National Science Review, 2023, 10(3): nwac257.
DOI URL |
[119] |
TASSARA S, GONZÁLEZ-JIMÉNEZ J M, REICH M, et al. Plume-subduction interaction forms large auriferous provinces[J]. Nature Communications, 2017, 8(1): 843.
DOI PMID |
[120] |
FIORENTINI M L, LAFLAMME C, DENYSZYN S, et al. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust[J]. Geochimica et Cosmochimica Acta, 2018, 223: 175-197.
DOI URL |
[121] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI |
[122] |
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11): 917-925.
DOI |
[123] |
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11): 911-916.
DOI |
[124] |
GUO H, AUDÉTAT A, DOLEJŠ D. Solubility of gold in oxidized, sulfur-bearing fluids at 500-850 ℃ and 200-230 MPa: a synthetic fluid inclusion study[J]. Geochimica et Cosmochimica Acta, 2018, 222: 655-670.
DOI URL |
[125] | MUNTEAN J L, CASSINERIO M D, AREHART G B, et al. Fluid pathways at the Turquoise Ridge Carlin-type gold deposit, Getchell district, Nevada[C]// Smart science for exploration and mining. Proceedings of the tenth biennial meeting of the Society of Geology Applied to Mineral Deposits, Townsville, Australia. 2009: 251-252. |
[126] | DENG J, YANG L Q, GE L S, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area[J]. Progress in Natural Science, Taylor & Francis, 2006, 16(8): 777-784. |
[127] |
YANG L Q, DENG J, WANG Q F, et al. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, eastern China[J]. Acta Geologica Sinica (English Edition), 2006, 80(3): 400-411.
DOI URL |
[128] | YANG L Q, DENG J, ZHANG J, et al. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone, Shandong Province, China[J]. Acta Petrologica Sinica, 2007, 23(1): 153-160. |
[129] |
GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153.
DOI URL |
[130] | 刘石年. 山东玲珑式金矿床矿体空间定位形式及其形成机制的探讨[J]. 地球科学: 中国地质大学学报, 1984(4): 47-56. |
[131] | 吕古贤, 孔庆存. 胶东玲珑-焦家式金矿地质[M]. 北京: 科学出版社, 1993: 253 |
[132] | 胡受奚, 叶瑛, 刘红樱. 地体构造对金区域成矿的重要意义[J]. 黄金地质, 2001, 7(4): 1-8. |
[133] | 汪劲草, 王国富, 汤静如. 玲珑-焦家地区金矿成矿构造体制的新认识[J]. 桂林工学院学报, 2002(1): 1-4. |
[134] |
DENG J, WANG Q F, YANG L Q, et al. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China[J]. Acta Geologica Sinica (English Edition), 2008, 82(4): 769-780.
DOI URL |
[135] |
CHARLES N, AUGIER R, GUMIAUX C, et al. Timing, duration and role of magmatism in wide rift systems: insights from the Jiaodong Peninsula (China, East Asia)[J]. Gondwana Research, 2013, 24(1): 412-428.
DOI URL |
[136] |
WEINBERG R F, HODKIEWICZ P F, GROVES D I. What controls gold distribution in Archean terranes?[J]. Geology, 2004, 32(7): 545-548.
DOI URL |
[137] | WEINBERG R F. Melt segregation and extraction from deforming plutons[C]// AGU Fall Meeting Abstracts. 2006: V23D-0663. |
[138] |
BIERLEIN F P, MURPHY F C, WEINBERG R F, et al. Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, western Australia[J]. Mineralium Deposita, 2006, 41: 107-126.
DOI URL |
[139] | 王晨光, 杨立强, 和文言. 滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义[J]. 岩石学报, 2017, 33(7): 2213-2224. |
[140] |
GROVES D I, SANTOSH M, GOLDFARB R J, et al. Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 2018, 9(4): 1163-1177.
DOI URL |
[141] |
COX S F, SUN S S, ETHERIDGE M A, et al. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia[J]. Economic Geology, 1995, 90(6): 1722-1746.
DOI URL |
[142] |
RIDLEY J, MIKUCKI E J, GROVES D I. Archean lode-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems[J]. Ore Geology Reviews, 1996, 10(3/4/5/6): 279-293.
DOI URL |
[143] | RHYS D, VALLI F, BURGESS R, et al. Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend[J]. New Concepts and Discoveries, 2015, 1: 333-389. |
[144] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[145] |
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584.
DOI URL |
[146] |
CRAW D. Gilded by earthquakes[J]. Nature Geoscience, 2013, 6(4): 248-250.
DOI |
[147] | 徐兴旺, 牛磊, 洪涛, 等. 流体构造动力学与成矿作用[J]. 地质力学学报, 2019, 25(1): 1-8. |
[148] |
FIELDING I O H, JOHNSON S P, ZI J W, et al. Gold metallogeny of the northern Capricorn Orogen: the relationship between crustal architecture, fault reactivation and hydrothermal fluid flow[J]. Ore Geology Reviews, 2020, 122: 103515.
DOI URL |
[149] | MCCUAIG T C, KERRICH R. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics[J]. Ore Geology Reviews, 1998, 12(6): 381-453. |
[150] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terranes[M]//HEDENQUIST J W, THOMPSON J F H, One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 407-450. |
[151] | 孙晓明, 石贵勇, 翟伟, 等. 青藏高原喜马拉雅期碰撞造山型金矿矿化特征和动力学机制: 以哀牢山金矿带为例[J]. 矿床地质, 2010, (S1): 995-996. |
[152] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
DOI URL |
[153] |
GROVES D I, GOLDFARB R J, SANTOSH M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings[J]. Geoscience Frontiers, 2016, 7(3): 303-314.
DOI URL |
[154] |
MONCADA D, RIMSTIDT J D, BODNAR R J. How to form a giant epithermal precious metal deposit: relationships between fluid flow rate, metal concentration of ore-forming fluids, duration of the ore-forming process, and ore grade and tonnage[J]. Ore Geology Reviews, 2019, 113: 103066.
DOI URL |
[155] | LANG J R, BAKER T, HART C J R, et al. An exploration model for intrusion-related gold systems[J]. SEG Newsletter, 2000(40): 1-15. |
[156] | MUNTEAN J L. The Carlin gold system: applications to exploration in Nevada and beyond[M]//MUNTEAN J L. Diversity in Carlin-style gold deposits. Washington: Society of Economic Geologists, 2018, 20: 39-88. |
[157] | SU W C, DONG W D, ZHANG X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China[J]. Reviews in Economic Geology, 2018, 20: 157-185. |
[158] |
GROVES D I, VIELREICHER R M, GOLDFARB R J, et al. Controls on the heterogeneous distribution of mineral deposits through time[J]. Geological Society, London, Special Publications, 2005, 248(1): 71-101.
DOI URL |
[159] | 许德如, 叶挺威, 王智琳. 成矿作用的空间分布不均匀性及其控制因素探讨[J]. 大地构造与成矿学, 2019, 43(3): 368-388. |
[160] |
PHILLIPS G N, VEARNCOMBE J R, ANAND R R, et al. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia[J]. Ore Geology Reviews, 2019, 112: 103009.
DOI URL |
[161] |
FYFE W S, KERRICH R. Fluids and thrusting[J]. Chemical Geology, 1985, 49(1/2/3): 353-362.
DOI URL |
[162] |
SPENCER J E, WELTY J W. Possible controls of base- and precious-metal mineralization associated with Tertiary detachment faults in the Lower Colorado River trough, Arizona and California[J]. Geology, 1986, 14(3): 195-198.
DOI URL |
[163] | ROBERT F, BOULLIER A M, FIRDAOUS K. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12861-12879. |
[164] |
CAMERON E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1. Conceptual model[J]. Journal of Geochemical Exploration, 1989, 31(2): 135-147.
DOI URL |
[165] |
HODGSON C J. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 1989, 4(3): 231-273.
DOI URL |
[166] | BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: a three-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25: 96-104. |
[167] |
COX S F, WALL V J, ETHERIDGE M A, et al. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits: examples from the Lachlan Fold Belt in central Victoria, Australia[J]. Ore Geology Reviews, 1991, 6(5): 391-423.
DOI URL |
[168] |
BOWERS T S. The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2417-2434.
DOI URL |
[169] | CLINE J S, BODNAR R J, RIMSTIDT J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B6): 9085-9103. |
[170] |
FALEIROS F M, DA CRUZ CAMPANHA G A, DA SILVEIRA BALLO R M, et al. Fault-valve action and vein development during strike-slip faulting: an example from the Ribeira shear zone, southeastern Brazil[J]. Tectonophysics, 2007, 438(1/2/3/4): 1-32.
DOI URL |
[171] |
STILLWELL F L. Replacement in the Bendigo quartz veins and its relation to gold deposits[J]. Economic Geology, 1918, 13(2): 100-111.
DOI URL |
[172] |
GROVES D I, PHILLIPS G N. The genesis and tectonic control on Archaean gold deposits of the western Australian shield: a metamorphic replacement model[J]. Ore Geology Reviews, 1987, 2(4): 287-322.
DOI URL |
[173] | COLVINE A C. An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada[J]. Economic Geology Monograph, 1989, 6: 37-53. |
[174] |
VEARNCOMBE J R. Shear zones, fault networks, and Archean gold[J]. Geology, 1998, 26(9): 855-858.
DOI URL |
[175] |
LI N, YANG L Q, GROVES D I, et al. Tectonic and district to deposit-scale structural controls on the Ge’erke orogenic gold deposit within the Dashui-Zhongqu district, West Qinling Belt, China[J]. Ore Geology Reviews, 2020, 120: 103436.
DOI URL |
[176] | 肖庆辉. 国外变质岩构造研究概况[J]. 辽宁区域地质, 1981(1): 1-29. |
[177] |
TRIPP G I, VEARNCOMBE J R. Fault/fracture density and mineralization: a contouring method for targeting in gold exploration[J]. Journal of Structural Geology, 2004, 26(6/7): 1087-1108.
DOI URL |
[178] | 郑义. 热液矿床超大比例尺构造-蚀变-矿化填图: 基本原理与注意事项[J]. 地球科学, 2022, 47(10): 3603-3615. |
[179] |
MARTEL E. The importance of structural mapping in ore deposits: a new perspective on the Howard's Pass Zn-Pb district, Northwest Territories, Canada[J]. Economic Geology, 2017, 112(6): 1285-1304.
DOI URL |
[180] | 张微, 杨金中, 方洪宾, 等. 东昆仑—阿尔金地区遥感地质解译与成矿预测[J]. 西北地质, 2010, 43(4): 288-294. |
[181] | PLATTEN I M, DOMINY S C. Geological mapping in the evaluation of structurally controlled gold veins:a case study from the Dolgellau gold belt, North Wales, United Kingdom[C]// Proceedings of world gold conference. Gauteng: The Southern African Institute of Mining and Metallurgy, 2009: 151-167. |
[182] | 滕寿仁, 董哲, 王营, 等. 1∶5万三维地质填图方法技术在本溪矿集区的应用[J]. 地质与资源, 2015, 24(4): 383-387. |
[183] | 傅昭仁, 李德威, 李先富, 等. 变质核杂岩及剥离断层的控矿构造解析[M]. 武汉: 中国地质大学出版社, 1992: 110. |
[184] | SAUMUR B M. Structure and dynamics of intrusion-hosted magmatic Ni-Cu sulphide deposits: insights from analogue experiments & Voisey's Bay (Canada)[D]. Melbourne: Monash University, 2014: 178. |
[185] | 张田, 张岳桥. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007, 13(2): 323. |
[186] | 张田, 张岳桥. 胶北隆起晚中生代构造-岩浆演化历史[J]. 地质学报, 2008, (9): 1210-1228. |
[187] |
DENG J, WANG C M, BAGAS L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006.
DOI URL |
[188] |
DENG J, FANG Y, YANG L Q, et al. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems[J]. Acta Geologica Sinica (English Edition), 2001, 75(2): 220-232.
DOI URL |
[189] |
YIGIT O, NELSON E P, HITZMAN M W, et al. Structural controls on Carlin-type gold mineralization in the Gold Bar district, Eureka County, Nevada[J]. Economic Geology, 2003, 98(6): 1173-1188.
DOI URL |
[190] | 吕庆田, 孟贵祥, 严加永, 等. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 2019, 46(4): 673-689. |
[191] | TRIPP G I. Stratigraphy and structure in the Neoarchaean of the Kalgoorlie district, Australia: critical controls on greenstone-hosted gold deposits[D]. Queensland: James Cook University, 2013: 773. |
[192] | BAI L X, XU X W, LUO H, et al. Angular unconformity of the Late Quaternary strata in the Hetao Basin, North of the Ordos Block (West China): timing and its tectonic implications[J]. Frontiers in Earth Science, Frontiers Media SA, 2021, 9: 646789. |
[193] | 张岳桥, 施炜, 李建华, 等. 大巴山前陆弧形构造带形成机理分析[J]. 地质学报, 2010, 84(9): 1300-1315. |
[194] | 池三川. 隐伏矿床(体)的寻找[M]. 武汉: 中国地质大学出版社, 1988: 117. |
[195] | 单文琅, 宋鸿林, 傅昭仁, 等. 构造变形分析的理论、方法和实践[M]. 武汉: 中国地质大学出版社, 1991: 159. |
[196] | 曾庆丰. 构造矿床学: 曾庆丰论选构造矿床学: 曾庆丰论著选编[M]. 北京: 科学出版社, 2016: 619. |
[197] | 杨立强, 邓军, 方云, 等. 构造-流体耦合成矿效应计算模拟[J]. 地球学报, 1999, 20(增刊): 433-437. |
[198] | 梁一鸿, 孙德育, 张业明. 内蒙古中部地区金矿床控矿构造类型[J]. 黄金, 1993, 14(2): 5-9. |
[199] | 魏赛拉加. 胶东郭城地区金矿床构造控矿规律研究及找矿方向[D]. 北京: 中国地质大学(北京), 2014. |
[200] | 李瑞红. 焦家金矿带构造控矿模式[D]. 北京: 中国地质大学(北京), 2017: 195. |
[201] | CALHOUN J. Fabric and microstructural analysis of the Loch Borralan pluton, Northwest Highlands, Scotland[D]. Milwaukee: The University of Wisconsin-Milwaukee, 2014. |
[202] |
KASSEM O M K, HAMIMI Z, ABOELKHAIR H, et al. Microstructural study and strain analysis of deformed Neoproterozoic lithologies in the Um Junud area, Northern Nubian Shield[J]. Geotectonics, 2019, 53: 125-139.
DOI |
[203] |
KRUCKENBERG S C, MICHELS Z D, PARSONS M M. From intracrystalline distortion to plate motion: unifying structural, kinematic, and textural analysis in heterogeneous shear zones through crystallographic orientation-dispersion methods[J]. Geosphere, 2019, 15(2): 357-381.
DOI URL |
[204] |
DE ROO J A. The Elura Ag-Pb-Zn mine in Australia: ore genesis in a slate belt by syndeformational metasomatism along hydrothermal fluid conduits[J]. Economic Geology, 1989, 84(2): 256-278.
DOI URL |
[205] |
LIU J, ZHAO G, XU G, et al. Structural control and genesis of gold deposits in the Liaodong Peninsula, northeastern North China Craton[J]. Ore Geology Reviews, 2020, 125: 103672.
DOI URL |
[206] |
HASRIA H, SIDIK M, AWADH S M, et al. Orogenic gold deposit in metamorphic rocks: minerals and structural control at Rarowatu area, Southeastern Arm of Sulawesi, Indonesia[J]. The Iraqi Geological Journal, 2023, 56(1B): 16-31.
DOI URL |
[207] | 孙岩. 裂隙岩相学研究: 以美国加州深钻岩心的扫描电镜观察为例[J]. 地质论评, 1990, 36(3): 249-254. |
[208] | 邓军, 杨立强, 方云, 等. 成矿系统嵌套分形结构和自有序效应[J]. 地学前缘, 2000, 7(1): 133-146. |
[209] |
HODKIEWICZ P F, WEINBERG R F, GARDOLL S J, et al. Complexity gradients in the Yilgarn Craton: fundamental controls on crustal-scale fluid flow and the formation of world-class orogenic-gold deposits[J]. Australian Journal of Earth Sciences, 2005, 52(6): 831-841.
DOI URL |
[210] |
HRONSKY J M A. Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2020, 55(2): 197-216.
DOI |
[211] |
SIBSON R H, SCOTT J. Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 293-306.
DOI URL |
[212] |
THÉBAUD N, SUGIONO D, LAFLAMME C, et al. Protracted and polyphased gold mineralisation in the Agnew district (Yilgarn Craton, western Australia)[J]. Precambrian Research, 2018, 310: 291-304.
DOI URL |
[213] |
STEINER A P, HICKEY K A. Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: a significant control on fluid-rock interaction and Au endowment[J]. Mineralium Deposita, 2023, 58(4): 797-823.
DOI |
[214] |
HENZA A A, WITHJACK M O, SCHLISCHE R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33(9): 1312-1324.
DOI URL |
[215] |
WITHJACK M O, HENZA A A, SCHLISCHE R W. Three-dimensional fault geometries and interactions within experimental models of multiphase extension[J]. AAPG Bulletin, 2017, 101(11): 1767-1789.
DOI URL |
[216] | 陈兴鹏, 李伟, 吴智平, 等. “伸展-走滑”复合作用下构造变形的物理模拟[J]. 大地构造与成矿学, 2019, 43(6): 1106-1116. |
[217] |
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407.
DOI URL |
[218] |
HENSTRA G A, KRISTENSEN T B, ROTEVATN A, et al. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 2019, 31(6): 1083-1097.
DOI URL |
[219] |
GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218.
DOI URL |
[220] |
NIXON C W, SANDERSON D J, DEE S J, et al. Fault interactions and reactivation within a normal-fault network at Milne Point, Alaska[J]. AAPG Bulletin, 2014, 98(10): 2081-2107.
DOI URL |
[221] | ATKINSON B K. Subcritical crack growth in geological materials[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4077-4114. |
[222] |
POLLARD D D, AYDIN A. Progress in understanding jointing over the past century[J]. Geological Society of America Bulletin, 1988, 100(8): 1181-1204.
DOI URL |
[223] |
MORLEY C K. The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand[J]. Geological Society, London, Special Publications, 2017, 439(1): 413-445.
DOI URL |
[224] |
赵利, 徐旭辉, 方成名, 等. 中西部冲断带多尺度地球物理解释及其物理模拟实验[J]. 地球物理学报, 2017, 60(7): 2885-2896.
DOI |
[225] |
REEVE M T, BELL R E, DUFFY O B, et al. The growth of non-colinear normal fault systems: what can we learn from 3D seismic reflection data?[J]. Journal of Structural Geology, 2015, 70: 141-155.
DOI URL |
[226] |
DENG C, GAWTHORPE R L, FOSSEN H, et al. How does the orientation of a preexisting basement weakness influence fault development during renewed rifting? Insights from three-dimensional discrete element modeling[J]. Tectonics, 2018, 37(7): 2221-2242.
DOI URL |
[227] | RILEY M S. Fracture trace length and number distributions from fracture mapping[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08414. |
[228] |
SANDERSON D J, NIXON C W. The use of topology in fracture network characterization[J]. Journal of Structural Geology, 2015, 72: 55-66.
DOI URL |
[229] | ANDRESEN C A, HANSEN A, LE GOC R, et al. Topology of fracture networks[J]. Frontiers in Physics, 2013, 1: 7. |
[230] |
DUFFY O B, NIXON C W, BELL R E, et al. The topology of evolving rift fault networks: single-phase vs. multi-phase rifts[J]. Journal of Structural Geology, 2017, 96: 192-202.
DOI URL |
[231] |
DIMMEN V, ROTEVATN A, PEACOCK D C P, et al. Quantifying structural controls on fluid flow: insights from carbonate-hosted fault damage zones on the Maltese Islands[J]. Journal of Structural Geology, 2017, 101: 43-57.
DOI URL |
[232] | MANZOCCHI T. The connectivity of two-dimensional networks of spatially correlated fractures[J]. Water Resources Research, 2002, 38(9): 1-1-1-20. |
[233] |
MICARELLI L, BENEDICTO A, WIBBERLEY C A J. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks[J]. Journal of Structural Geology, 2006, 28(7): 1214-1227.
DOI URL |
[234] | 王迪, 吴智平, 宋国奇, 等. 断裂网络体系拓扑结构与油气运移的关系: 以临南洼陷为例[J]. 中国矿业大学学报, 2021, 50(1): 154-162. |
[235] |
BLENKINSOP T G, KADZVITI S. Fluid flow in shear zones: insights from the geometry and evolution of ore bodies at Renco gold mine, Zimbabwe[J]. Geofluids, 2006, 6(4): 334-345.
DOI URL |
[236] | 任建业. 变形岩石中的运动学标志[J]. 地质科技情报, 1988(1): 23-30. |
[237] | 孙士军. 黔东北走滑断层之特征及形成机制分析[J]. 贵州地质, 1995, 12(3): 244-251. |
[238] | 傅昭仁, 蔡学林. 变质岩区构造地质学[M]. 北京: 地质出版社, 1996: 243. |
[239] |
JAPAS M S, GÓMEZ A L R, RUBINSTEIN N A. Unravelling the hydro-mechanical evolution of a porphyry-type deposit by using vein structures[J]. Ore Geology Reviews, 2021, 133: 104074.
DOI URL |
[240] |
SIBSON R H. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 1998, 20(5): 655-660.
DOI URL |
[241] |
STEPHENS J R, MAIR J L, OLIVER N H S, et al. Structural and mechanical controls on intrusion-related deposits of the Tombstone gold belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types[J]. Journal of Structural Geology, 2004, 26(6): 1025-1041.
DOI URL |
[242] |
TCHALENKO J S. The evolution of kink-bands and the development of compression textures in sheared clays[J]. Tectonophysics, 1968, 6(2): 159-174.
DOI URL |
[243] | ROBERTS R G. Ore deposit models#11. Archean lode gold deposits[J]. Geoscience Canada, 1987, 14(1): 37-52. |
[244] | 杨农, 陈正乐, 雷伟志, 等. 冀北燕山地区印支期构造特征研究[M]. 北京: 地质出版社, 1996: 70. |
[245] | 孙叶, 谭成轩. 构造应力场研究与实践[J]. 地质力学学报, 2001(3): 254-258. |
[246] | GYSI A, MEI Y, DRIESNER T. Advances in numerical simulations of hydrothermal ore forming processes[J]. Geofluids, 2020, 2020: 1-4. |
[247] |
WU X, ZHENG Y, WU B, et al. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach[J]. Agricultural Water Management, 2016, 163: 380-392.
DOI URL |
[248] | BETHKE C M, LEE M K, QUINODOZ H, et al. Basin modeling with Basin2: a guide to using Basin2, B2plot, B2video, and B2view[R]. Springfield: University of Illinois, 1993: 1-225. |
[249] | PRUESS K. Analysis of flow processes during TCE infiltration in heterogeneous soils at the Savannah River Site, Aiken, South Carolina[R]. Berkeley: Lawrence Berkeley National Lab, 1992. |
[250] | CUI T. Formation mechanisms of unconformity-related uranium deposits: insights from numerical modeling[M]. Windsor: University of Windsor (Canada), 2012. |
[251] |
LEADER L D, WILSON C J L, ROBINSON J A. Structural constraints and numerical simulation of strain localization in the Bendigo goldfield, Victoria, Australia[J]. Economic Geology, 2013, 108(2): 279-307.
DOI URL |
[252] |
LI Q, ITO K, WU Z S, et al. COMSOL multiphysics: a novel approach to ground water modeling[J]. Groundwater, 2009, 47(4): 480-487.
DOI URL |
[253] |
SCHAUBS P M, RAWLING T J, DUGDALE L J, et al. Factors controlling the location of gold mineralisation around basalt domes in the Stawell corridor: insights from coupled 3D deformation-fluid-flow numerical models[J]. Australian Journal of Earth Sciences, 2006, 53(5): 841-862.
DOI URL |
[254] |
ZHANG Y H, ROBERTS P A, MURPHY B. Understanding regional structural controls on mineralization at the century deposit: a numerical modelling approach[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 244-250.
DOI URL |
[255] |
POTMA W, ROBERTS P A, SCHAUBS P M, et al. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling[J]. Australian Journal of Earth Sciences, 2008, 55(1): 101-122.
DOI URL |
[256] |
ZHANG Y H, ROBINSON J, SCHAUBS P M. Numerical modelling of structural controls on fluid flow and mineralization[J]. Geoscience Frontiers, 2011, 2(3): 449-461.
DOI URL |
[257] |
SHELDON H A, MICKLETHWAITE S. Damage and permeability around faults: implications for mineralization[J]. Geology, 2007, 35(10): 903-906.
DOI URL |
[258] |
ZHANG Y H, SORJONEN-WARD P, ORD A, et al. Fluid flow during deformation associated with structural closure of the Isa superbasin at 1575 Ma in the central and northern Lawn Hill platform, northern Australia[J]. Economic Geology, 2006, 101(6): 1293-1312.
DOI URL |
[259] |
EVANS K A, PHILLIPS G N, POWELL R. Rock-buffering of auriferous fluids in altered rocks associated with the Golden Mile-style mineralization, Kalgoorlie gold field, western Australia[J]. Economic Geology, 2006, 101(4): 805-817.
DOI URL |
[260] |
EVANS K A. A test of the viability of fluid-wall rock interaction mechanisms for changes in opaque phase assemblage in metasedimentary rocks in the Kambalda-St. Ives goldfield, western Australia[J]. Mineralium Deposita, 2010, 45(2): 207-213.
DOI URL |
[261] |
WHITE A J R, WATERS D J, ROBB L J. The application of P-T-X(CO2) modelling in constraining metamorphism and hydrothermal alteration at the Damang gold deposit, Ghana[J]. Journal of Metamorphic Geology, 2013, 31(9): 937-961.
DOI URL |
[262] |
PHILLIPS G N, EVANS K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429(6994): 860-863.
DOI |
[263] |
HU S Y, EVANS K, CRAW D, et al. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J]. Geology, 2017, 45(2): 167-170.
DOI URL |
[264] | SHVAROV Y V, BASTRAKOV E N. HCh: a software package for geochemical equilibrium modelling. User's guide[J]. Australian Geological Survey Organisation, Record, 1999, 25: 61. |
[265] |
MERNAGH T P, BIERLEIN F P. Transport and precipitation of gold in Phanerozoic metamorphic terranes from chemical modeling of fluid-rock interaction[J]. Economic Geology, 2008, 103(8): 1613-1640.
DOI URL |
[266] | 王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508. |
[267] | 王偲瑞, 杨立强, 成浩, 等. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟[J]. 岩石学报, 2020, 36(5): 1529-1546. |
[268] | 宋国政, 李山, 闫春明, 等. 焦家金矿田Ⅰ号主矿体地质特征及找矿方向[J]. 地质与勘探, 2018, 54(2): 219-229. |
[1] | CHENG Qiuming. Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones [J]. Earth Science Frontiers, 2024, 31(1): 1-14. |
[2] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[3] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[4] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[5] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[6] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[7] | HE Lanfang, LI Liang, SHEN Ping, WANG Sihao, LI Zhiyuan, ZHOU Nannan, CHEN Rujun, QIN Kezhang. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay [J]. Earth Science Frontiers, 2023, 30(5): 244-254. |
[8] | JIAO Yanjie, HUANG Xuri, LI Guangming, FU Jiangang, LIANG Shengxian, GUO Jing. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 255-264. |
[9] | WEI Xinhao, ZHOU Nannan, ZHANG Shun. Detectability of pegmatite lithium deposits by controlled-source electromagnetic methods [J]. Earth Science Frontiers, 2023, 30(5): 265-274. |
[10] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[11] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[12] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
[13] | Anastasiya SERGEEVA, Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA. Secondary minerals in basalts of the Evevpenta gold occurrence (North Kamchatka, Russia) as indicators of ore forming processes [J]. Earth Science Frontiers, 2023, 30(5): 450-468. |
[14] | CHEN Xin, WANG Hui, MAO Jingwen, YU Miao, QIAO Jianfeng, WANG Zhian. Genesis and geological significance of hydrothermal Pb-Zn orebodies in the Xiarihamu mining area, East Kunlun Mountains, China [J]. Earth Science Frontiers, 2023, 30(2): 347-369. |
[15] | ZHANG Weifeng, CHEN Huayong, DENG Xin, JIN Xinbiao, LIU Shuzhan, TAN Juanjuan. Discriminating characteristics of hydrothermal fluids using epidote mineral chemistry and strontium isotopes: A case study of the Duotoushan Fe-Cu deposit, eastern Tianshan [J]. Earth Science Frontiers, 2023, 30(2): 384-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||