Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 1-25.DOI: 10.13745/j.esf.sf.2023.5.24
Previous Articles Next Articles
LI Jiankang1(), LI Peng1, HUANG Zhibiao2, ZHOU Fangchun2, ZHANG Liping2, HUANG Xiaoqiang2
Received:
2023-01-03
Revised:
2023-01-28
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview[J]. Earth Science Frontiers, 2023, 30(5): 1-25.
伟晶岩特征 | 微斜长石伟晶岩(Ⅰ) | 微斜长石-钠长石伟晶岩(Ⅱ) | 钠长石伟晶岩(Ⅲ) | 锂辉石-钠长石伟晶岩(Ⅳ) |
---|---|---|---|---|
相对于幕阜山 杂岩体的位置 | 内接触带 | 距岩体0~2.5 km | 距岩体2.5~3.0 km | 距岩体>3.0 km |
伟晶岩规模 | 中 | 大 | 中 | 大 |
伟晶岩形态 | 膨胀收缩状 | 分枝复合 | 不规则 | 不规则 |
伟晶岩产状 | 变化复杂或透镜状 | 似层状,产状较稳定 | 似层状,产状较稳定 | 似层状,产状较稳定 |
结构、构造 | 以原生熔体结晶结构为主,局部有钠长石化 | 原生熔体结晶结构及交代结构,钠长石化、白云母化较强烈 | 以交代残余结构为主,残留原生结构,钠长石化、白云母化强烈 | 以交代残余结构为主,残留原生结构 |
主要造岩矿物 | 微斜长石为主,石英、钠长石次之 | 钠长石、微斜长石为主,石英次之 | 钠长石为主,微斜长石、石英次之 | 钠长石、锂辉石为主,微斜长石、石英次之 |
矿种组合 | 铍 | 铍、铌钽 | 铌钽 | 铌钽、锂 |
交代作用 | 弱 | 中 | 强 | 强 |
主要稀有矿物特征 | 铌铁矿呈黑色板状、针状;绿柱石呈蓝色短柱状 | 铌-钽铁矿为黑色,板状、粒状、针状、片状;绿柱石为蓝色或浅绿色,粗粒长柱状 | 铌-钽铁矿为褐色,块状、粒状、针状;绿柱石呈淡绿色细粒长柱状 | 铌-钽铁矿为棕褐或褐色,针状、粒状;绿柱石呈淡黄色,细粒长柱状 |
Table 1 Characteristics of pegmatite types in the Renli orefield. Adapted from [6].
伟晶岩特征 | 微斜长石伟晶岩(Ⅰ) | 微斜长石-钠长石伟晶岩(Ⅱ) | 钠长石伟晶岩(Ⅲ) | 锂辉石-钠长石伟晶岩(Ⅳ) |
---|---|---|---|---|
相对于幕阜山 杂岩体的位置 | 内接触带 | 距岩体0~2.5 km | 距岩体2.5~3.0 km | 距岩体>3.0 km |
伟晶岩规模 | 中 | 大 | 中 | 大 |
伟晶岩形态 | 膨胀收缩状 | 分枝复合 | 不规则 | 不规则 |
伟晶岩产状 | 变化复杂或透镜状 | 似层状,产状较稳定 | 似层状,产状较稳定 | 似层状,产状较稳定 |
结构、构造 | 以原生熔体结晶结构为主,局部有钠长石化 | 原生熔体结晶结构及交代结构,钠长石化、白云母化较强烈 | 以交代残余结构为主,残留原生结构,钠长石化、白云母化强烈 | 以交代残余结构为主,残留原生结构 |
主要造岩矿物 | 微斜长石为主,石英、钠长石次之 | 钠长石、微斜长石为主,石英次之 | 钠长石为主,微斜长石、石英次之 | 钠长石、锂辉石为主,微斜长石、石英次之 |
矿种组合 | 铍 | 铍、铌钽 | 铌钽 | 铌钽、锂 |
交代作用 | 弱 | 中 | 强 | 强 |
主要稀有矿物特征 | 铌铁矿呈黑色板状、针状;绿柱石呈蓝色短柱状 | 铌-钽铁矿为黑色,板状、粒状、针状、片状;绿柱石为蓝色或浅绿色,粗粒长柱状 | 铌-钽铁矿为褐色,块状、粒状、针状;绿柱石呈淡绿色细粒长柱状 | 铌-钽铁矿为棕褐或褐色,针状、粒状;绿柱石呈淡黄色,细粒长柱状 |
结构带 | 所在伟晶岩类型 | 主要矿物(体积分数/%) | 次要矿物 | 矿化特征 |
---|---|---|---|---|
粗粒微斜长石带 | Ⅰ内部 | 石英(20~30);微斜长石(40~50) | 斜长石、白云母 | 偶见绿柱石 |
文象结构带 | Ⅰ、Ⅱ类型内部 | 石英20~35;微斜长石(50~70) | 斜长石、白云母 | 偶见绿柱石 |
块体微斜长石带 | Ⅰ内部 | 石英20;微斜长石(70~80) | 钠长石、白云母 | 绿柱石 |
白云母带 | Ⅰ内部偶见 | 石英(20~60);白云母(20~50) | 微斜长石、钠长石 | 偶见绿柱石 |
微斜长石钠长石带 | Ⅱ标型结构带 | 石英(20~35);微斜长石(15~35); 钠长石(15~35);白云母(<30) | 石榴石 | 铍铌钽矿化带, 产出绿柱石、铌钽铁矿 |
钠长石带 | Ⅲ标型结构带, Ⅱ、Ⅳ中偶见 | 石英(15~35);钠长石(35~65) | 白云母、微斜长石、 石榴子石 | 铌钽矿化带, 产出铌钽铁矿和绿柱石 |
锂云母钠长石带 | Ⅱ中偶见 | 石英(30~40);锂云母(20~40); 钠长石(10~20) | 白云母、微斜长石、 锂电气石 | 铌钽锂含矿带,产锂云母、铯沸石、 铯绿柱石、锂电气石、细晶石 |
钠长石锂辉石带 | Ⅳ标型结构带 | 石英(20~30);钠长石(30~50); 锂辉石(10~30) | 微斜长石、白云母 | 锂矿化带,产锂辉石、 铌钽铁矿 |
石英锂辉石带 | Ⅳ核部 | 石英(30~50);锂辉石(20~40); 钠长石(10~20) | 钠长石、白云母 | 锂矿化带,产锂辉石、 铌钽铁矿 |
Table 2 Characteristics of pegmatite inner-zones in the Renli orefield. Adapted from [6,18].
结构带 | 所在伟晶岩类型 | 主要矿物(体积分数/%) | 次要矿物 | 矿化特征 |
---|---|---|---|---|
粗粒微斜长石带 | Ⅰ内部 | 石英(20~30);微斜长石(40~50) | 斜长石、白云母 | 偶见绿柱石 |
文象结构带 | Ⅰ、Ⅱ类型内部 | 石英20~35;微斜长石(50~70) | 斜长石、白云母 | 偶见绿柱石 |
块体微斜长石带 | Ⅰ内部 | 石英20;微斜长石(70~80) | 钠长石、白云母 | 绿柱石 |
白云母带 | Ⅰ内部偶见 | 石英(20~60);白云母(20~50) | 微斜长石、钠长石 | 偶见绿柱石 |
微斜长石钠长石带 | Ⅱ标型结构带 | 石英(20~35);微斜长石(15~35); 钠长石(15~35);白云母(<30) | 石榴石 | 铍铌钽矿化带, 产出绿柱石、铌钽铁矿 |
钠长石带 | Ⅲ标型结构带, Ⅱ、Ⅳ中偶见 | 石英(15~35);钠长石(35~65) | 白云母、微斜长石、 石榴子石 | 铌钽矿化带, 产出铌钽铁矿和绿柱石 |
锂云母钠长石带 | Ⅱ中偶见 | 石英(30~40);锂云母(20~40); 钠长石(10~20) | 白云母、微斜长石、 锂电气石 | 铌钽锂含矿带,产锂云母、铯沸石、 铯绿柱石、锂电气石、细晶石 |
钠长石锂辉石带 | Ⅳ标型结构带 | 石英(20~30);钠长石(30~50); 锂辉石(10~30) | 微斜长石、白云母 | 锂矿化带,产锂辉石、 铌钽铁矿 |
石英锂辉石带 | Ⅳ核部 | 石英(30~50);锂辉石(20~40); 钠长石(10~20) | 钠长石、白云母 | 锂矿化带,产锂辉石、 铌钽铁矿 |
测试地质体 | 定年矿物 | 同位素体系 | 年龄/Ma | 参考文献 |
---|---|---|---|---|
仁里ZK708深部240 m隐伏黑云母花岗岩 | 锆石 | LA-ICP-MS U-Pb | 146.2±0.2 | [ |
黑云母二长花岗岩 | 锆石 | LA-ICP-MS U-Pb | 140.7±0.7 140.3±0.7 | [ |
黑云母二长花岗岩 | 锆石 | LA-ICP-MS U-Pb | 139.3±0.2 | [ |
二云母花岗岩 | 锆石 | LA-ICP-MS U-Pb | 138.3±0.3 | [ |
仁里5号伟晶岩脉 | 锆石 | LA-ICP-MS U-Pb | 131.2±2.4 | [ |
仁里5号伟晶岩脉 | 铌钽铁矿 | LA-ICP-MS U-Pb | 133.0±2.6 | [ |
仁里5号脉ZK1616伟晶岩样品 | 辉钼矿 | Re-Os | 130.5±1.1 | [ |
仁里5号伟晶岩脉 | 锂云母 | Ar-Ar | 125.0±1.4 | [ |
钠长石锂辉石伟晶岩 | 白云母 | Ar-Ar | 130.8±0.8 | [ |
黄柏山603号锂辉石伟晶岩 | 铌钽铁矿 | LA-ICP-MS U-Pb | 133.0±1.5 | 未发表 |
Table 3 Chronological data for granite and pegmatite in the Renli orefield
测试地质体 | 定年矿物 | 同位素体系 | 年龄/Ma | 参考文献 |
---|---|---|---|---|
仁里ZK708深部240 m隐伏黑云母花岗岩 | 锆石 | LA-ICP-MS U-Pb | 146.2±0.2 | [ |
黑云母二长花岗岩 | 锆石 | LA-ICP-MS U-Pb | 140.7±0.7 140.3±0.7 | [ |
黑云母二长花岗岩 | 锆石 | LA-ICP-MS U-Pb | 139.3±0.2 | [ |
二云母花岗岩 | 锆石 | LA-ICP-MS U-Pb | 138.3±0.3 | [ |
仁里5号伟晶岩脉 | 锆石 | LA-ICP-MS U-Pb | 131.2±2.4 | [ |
仁里5号伟晶岩脉 | 铌钽铁矿 | LA-ICP-MS U-Pb | 133.0±2.6 | [ |
仁里5号脉ZK1616伟晶岩样品 | 辉钼矿 | Re-Os | 130.5±1.1 | [ |
仁里5号伟晶岩脉 | 锂云母 | Ar-Ar | 125.0±1.4 | [ |
钠长石锂辉石伟晶岩 | 白云母 | Ar-Ar | 130.8±0.8 | [ |
黄柏山603号锂辉石伟晶岩 | 铌钽铁矿 | LA-ICP-MS U-Pb | 133.0±1.5 | 未发表 |
Fig.15 Binary element plots of K/Rb vs. Cs and Rb, Ta/Nb vs. Li, Ta and TiO2, and F vs. Li for muscovite from the Renli orefiled. Modified after [13].
Fig.16 εHf(t) and Hf model age histograms and εHf(t) vs. U-Pb age diagram for zircons from granite, pegmatites and Neoproterozoic schists from the Renli orefield. Adapted from [10].
[1] | 周芳春, 黄志飚, 陈虎, 等. 湖南省平江县仁里矿区铌钽多金属矿普查报告[R]. 岳阳: 湖南省核工业地质局三一一大队, 2021: 1-163. |
[2] | 刘翔, 周芳春, 黄志飚, 等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2018, 42(2): 235-243. |
[3] | 周芳春, 刘翔, 李建康, 等. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J]. 大地构造与成矿学, 2019, 43(1): 77-91. |
[4] | 李鹏, 李建康, 张立平, 等. 幕阜山西南缘黄柏山稀有金属伟晶岩密集区的发现及意义[J]. 矿床地质, 2019, 38(5): 1069-1076. |
[5] | 李鹏, 张立平, 李建康, 等. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J]. 矿床地质, 2021, 40(4): 819-841. |
[6] | 李鹏. 幕阜山地区岩浆活动及稀有金属成矿规律[D]. 北京: 中国地质科学院矿产资源研究所, 2017: 1-174. |
[7] | 李鹏, 李建康, 裴荣富, 等. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据[J]. 地球科学, 2017, 42(10): 1684-1696. |
[8] |
JI W B, FAURE M, LIN W, et al. Multiple emplacement and exhumation history of the late Mesozoic Dayunshan-Mufushan batholith in southeast China and its tectonic significance: 1.Structural analysis and geochronological constraints[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 689-710.
DOI URL |
[9] |
JI W B, CHEN Y, CHEN K, et al. Multiple emplacement and exhumation history of the late Mesozoic Dayunshan-Mufushan batholith in southeast China and its tectonic significance: 2. magnetic fabrics and gravity survey[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 711-731.
DOI URL |
[10] |
LI P, LI J K, LIU X, et al. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: a case study of the giant Renli Nb-Ta deposit in Hunan, China[J]. Ore Geology Reviews, 2020, 116: 103237.
DOI URL |
[11] | 湖南省地质调查院. 湖南省区域地质志[R]. 长沙: 湖南省地质调查院, 2012: 1-383. |
[12] | 黄福喜. 中上扬子克拉通盆地沉积层序充填过程与演化模式[D]. 成都: 成都理工大学, 2011: 1-146. |
[13] |
LI P, LI J K, CHEN Z Y, et al. Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, northeast Hunan, China: implications for its petrogenesis and mineralization potential[J]. Ore Geology Reviews, 2021, 138: 104380.
DOI URL |
[14] | 黄志飚, 李鹏, 周芳春, 等. 幕阜山地区新元古代花岗岩地球化学特征及成因探讨[J]. 桂林理工大学学报, 2018, 38(4): 614-624. |
[15] | 张如柏. 湖北锂伟晶岩中发现透锂长石[J]. 科学通报, 1985, (11): 852-854. |
[16] | 张丽雅, 张成乘, 赵帆, 等. 湖北省断峰山铌钽矿床地质特征及成因[J]. 现代矿业, 2019, 35(6): 45-50. |
[17] | 魏均启, 朱丹, 王芳, 等. 湖北断峰山铌钽矿矿物学特征和铌钽赋存状态[J]. 矿物学报, 2021, 41(3): 319-326. |
[18] | 许畅. 湘东北仁里稀有金属伟晶岩中锂辉石的蚀变特征[D]. 北京: 中国地质大学(北京), 2020: 1-41. |
[19] | 李鹏, 刘翔, 李建康, 等. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019, 93(6): 1374-1391. |
[20] | 杨晗, 陈振宇, 李建康, 等. 湖南仁里5号伟晶岩脉铌钽矿物特征与岩浆热液成因的探讨[J]. 矿床地质, 2021, 40(4): 706-722. |
[21] |
LI J K, LIU C Y, LI P, et al. Tantalum and niobium mineralization from F- and Cl-rich fluid in the lepidolite-rich pegmatite from the Renli deposit in northern Hunan, China: constraints of fluid inclusions and lepidolite crystallization experiments[J]. Ore Geology Reviews, 2019, 115: 103187.
DOI URL |
[22] | 王臻, 陈振宇, 李建康, 等. 云母矿物对仁里稀有金属伟晶岩矿床岩浆-热液演化过程的指示[J]. 矿床地质, 2019, 38(5): 1039-1052. |
[23] |
TISCHENDORF G, GOTTESMANN B, FÖRSTER H, et al. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineral Magazine, 1997, 61(6): 809-834.
DOI URL |
[24] | PARKER R L, FLEISCHER M. Geochemistry of niobium and tantalum[J]. Geological Survey Professional Paper, 1968, 612: 1-40. |
[25] | 杨晗. 湘东北仁里铌钽矿床5号伟晶岩脉矿物学特征及其对岩浆-热液演化的指示[D]. 北京: 中国地质科学院矿产资源研究所, 2020: 36-45. |
[26] | LONDON D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71: 376-395. |
[27] | 李鹏, 李建康, 张立平, 等. 华中幕阜山矿集区黄柏山锂铌钽矿床成矿地质特征及找矿方向[J]. 岩石学报, 2023(待刊). |
[28] | 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2010: 231-237. |
[29] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[30] | 李胜虎, 李建康, 张德会, 等. 广西栗木钽铌锡多金属矿床的成矿流体演化及其对成矿过程的制约[J]. 岩石学报, 2015, 31(4): 954-966. |
[31] |
WANG R, CHE X C, ZHANG W D, et al. Geochemical evolution and late re-equilibration of NaCs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China)[J]. European Journal of Mineralogy, 2009, 21(4): 795-809.
DOI URL |
[32] | FOORD E E, COOK R B. Mineralogy and paragenesis of the McAllister Sn-Ta-bearing pegmatite, coosa County, Alabama[J]. The Canadian Mineralogist, 1989, 27(1): 93-105. |
[33] |
GAMMEL E M, NABELEK P I. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist, 2016, 101(8): 1906-1915.
DOI URL |
[34] | LONDON D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites[J]. American Mineralogist, 1984, 69: 995-1004. |
[35] |
MCCAULEY A, BRADLEY D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2): 183-190.
DOI URL |
[36] |
BRADLEY D C. Secular trends in the geologic record and the supercontinent cycle[J]. Earth-Science Reviews, 2011, 108(1/2): 16-33.
DOI URL |
[37] | 李鹏, 周芳春, 李建康, 等. 湘东北仁里-传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 2020, 44(3): 486-500. |
[38] | 刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019, 38(4): 771-791. |
[39] | 周芳春, 黄志飚, 刘翔, 等. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 大地构造与成矿学, 2020, 44(3): 476-485. |
[40] | 王孝磊, 周金城, 邱检生, 等. 湖南中—新元古代火山-侵入岩地球化学及成因意义[J]. 岩石学报, 2003, 19(1): 49-60. |
[41] | 王孝磊, 周金城, 邱检生, 等. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约[J]. 岩石学报, 2006, 22(2): 326-342. |
[42] | 王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36(5): 714-735. |
[43] | 舒良树. 陆内造山带特征及其动力学讨论[J]. 地质学报, 2021, 95(1): 98-106. |
[44] | 来志庆. 桂西北地区摩天岭和元宝山花岗岩岩石地球化学及其成因研究[D]. 青岛: 中国海洋大学, 2009: 1-93. |
[45] | 葛文春, 李献华, 李正祥, 等. 桂北新元古代两类过铝花岗岩的地球化学研究[J]. 地球化学, 2001, 30(1): 24-34. |
[46] |
PARTINGTON G A, MCNAUGHTON N J, WILLIAMS I S. A review of the geology, mineralization, and geochronology of the greenbushes pegmatite, western Australia[J]. Economic Geology, 1995, 90(3): 616-635.
DOI URL |
[47] | BREAKS F W, MOORE J M. The Ghost Lake Batholith, Superior Province of Northwestern Ontario: a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. Canadian Mineralogist, 1992, 30: 835-875. |
[48] |
MORTEANI G, PREINFALK C, HORN A H. Classification and mineralization potential of the pegmatites of the eastern Brazilian pegmatite province[J]. Mineralium Deposita, 2000, 35(7): 638-655.
DOI URL |
[49] |
LI J K, ZOU T R, LIU X F, et al. The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica (English Edition), 2015, 89(2): 652-670.
DOI URL |
[50] |
STOREY, C D, BREWER T S, PARRISH R R. Late-Proterozoic tectonics in Northwest Scotland: one contractional orogeny or several?[J]. Precambrian Research, 2004, 134(3/4): 227-247.
DOI URL |
[51] |
SCHMITT R S, TROUW R A J, SCHMUS W R V, et al. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil)[J]. Precambrian Research, 2004, 133(1/2): 29-61.
DOI URL |
[52] | 李晓峰, 韦星林, 朱艺婷, 等. 华南稀有金属矿床: 类型、特点、时空分布与背景[J]. 岩石学报, 2021, 37(12): 3591-3614. |
[53] | 陈国能, 陈震, 陈雄, 等. 壳内熔融与大陆造山: 中山大学地质学系成立90周年暨陈国达院士诞辰102周年纪念[J]. 大地构造与成矿学, 2015, 39(3): 383-390. |
[54] |
LINNEN R L, KEPPLER H. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2): 213-227.
DOI URL |
[55] |
XIONG Y Q, JIANG S Y, WEN C H, et al. Granite-pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: constraints from U-Th-Pb geochronology of coltan, monazite, and zircon[J]. Lithos, 2020, 358/359: 105422.
DOI URL |
[56] | 李建康, 王登红, 张德会. 川西伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社, 2007: 1-187. |
[57] | 王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085-3098. |
[58] |
THOMAS MULJA T, WILLIAMS-JONES A E. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada[J]. Chemical Geology, 2018, 493: 281-297.
DOI URL |
[59] |
ICENHOWER J, LONDON D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11/12): 1229-1251.
DOI URL |
[60] | ČERNÝP, FERGUSON R B, HWATHORNE F C, et al. Granitic pegmatites in science and industry[M]. Ottawa: Mineralogical Association of Canada, 1982: 1-554. |
[61] | LONDON D. Pegmatites[J]. Special Publication, Canadian Mineralogist, 2008, 10: 1-347. |
[62] |
ČERNÝP. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/2/3/4): 429-468.
DOI URL |
[63] |
ČERNÝP, ANDERSON A J, TOMASCAK P B, et al. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe[J]. The Canadian Mineralogist, 2003, 41(4): 1003-1011.
DOI URL |
[64] |
LONDON D. Reading pegmatites: part 3: what lithium minerals say[J]. Rocks and Minerals, 2017, 92: 144-157.
DOI URL |
[65] |
THOMAS R, DAVIDSON P, BEURLEN H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012, 106(1): 55-73.
DOI URL |
[66] |
WEBSTER J D, HOLLOWAY J R, HERVIG R L. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1989, 84: 116-134.
DOI URL |
[67] |
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93: 1013-1025.
DOI URL |
[68] | CHEVYCHELOV V Y, ZARAISKY G P, BORISOVSKII S E, et al. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites[J]. Petrology, 2005, 13: 305-321. |
[69] |
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3): 287-300.
DOI URL |
[70] | SMITH E F. Observations on columbium and tantalum[J]. Proceedings of the American Philosophical Society, 1905, 44(180): 151-158. |
[71] | LINNEN R, TRUEMAN D L, BURT R. Tantalum and niobium[M]// Critical metals handbook. Oxford: John Wiley and Sons, 2013: 361-384. |
[72] |
SEVDIĆD, MEIDER-GORIČANH. Solvent extraction of niobium and tantalum[J]. Journal of the Less Common Metals, 1974, 37(1): 103-110.
DOI URL |
[73] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
DOI URL |
[74] |
ZHU Z Y, WANG R C, MARIGNAC C, et al. A new style of rare metal granite with Nb-rich mica: the Early Cretaceous Huangshan rare-metal granite suite, Northeast Jiangxi Province, Southeast China[J]. American Mineralogist, 2018, 103(10): 1530-1544.
DOI URL |
[75] |
WOOD S A, WILLIAMS-JONES A E. Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars[J]. Contributions to Mineralogy and Petrology, 1993, 114(2): 255-263.
DOI URL |
[76] | LONDON D, BURT D M. Chemical models for lithium aluminosilicate stabilities in pegmatites and granites[J]. American Mineralogist, 1982, 67(5/6): 494-509. |
[77] | LONDON D, BURT D M. Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho district, Arizona[J]. American Mineralogist, 1982, 67(1/2): 97-113. |
[78] | YIN R, HUANG X L, XU Y G, et al. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China[J]. Lithos, 2020, 352/353: 1-17. |
[79] |
BOBOS I, VIEILLARD P, CHAROY B, et al. Alteration of spodumene to cookeite and its pressure and temperature stability conditions in Li-bearing aplite-pegmatites from northern Portugal[J]. Clays and Clay Minerals, 2007, 55(3): 295-310.
DOI URL |
[80] |
WANG Z, LI J K, CHEN Z Y, et al. Evolution and Li mineralization of the No.134 pegmatite in the Jiajika rare-metal deposit, western Sichuan, China: constrains from critical minerals[J]. Minerals, 2022, 12(1): 45.
DOI URL |
[81] | 熊欣, 李建康, 王登红, 等. 川西扎乌龙花岗伟晶岩型稀有金属矿床铌钽铁矿族矿物特征及其意义[J]. 矿床地质, 2021, 40(4): 693-705. |
[82] |
SIRBESCU M-L C. NABELEK P C. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota: evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2443-2465.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||