Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 167-178.DOI: 10.13745/j.esf.sf.2022.1.39
Previous Articles Next Articles
LI Haiming1,2,3(), LI Mengdi1,2,3, XIAO Han1,2,3, LIU Xuena1,2,3
Received:
2022-01-25
Revised:
2022-02-08
Online:
2022-05-25
Published:
2022-04-28
CLC Number:
LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain[J]. Earth Science Frontiers, 2022, 29(3): 167-178.
组分 | 样本量 | 组分浓度/(mg·L-1) | 组分浓度标准差/ (mg·L-1) | 变异系数/% | ||
---|---|---|---|---|---|---|
极大值 | 极小值 | 均值 | ||||
TDS | 50 | 63 000.00 | 557.00 | 7 836.59 | 11 584.12 | 147.82 |
K+ | 50 | 284.00 | 0.62 | 30.90 | 55.28 | 178.89 |
Na+ | 50 | 11 522.00 | 63.00 | 1 541.19 | 2 248.71 | 145.91 |
Ca2+ | 50 | 1 370.00 | 30.50 | 226.05 | 254.88 | 112.75 |
Mg2+ | 50 | 1 494.00 | 23.70 | 215.14 | 279.27 | 129.81 |
50 | 1 740.00 | 97.00 | 596.21 | 260.01 | 43.61 | |
Cl- | 50 | 21 053.00 | 56.00 | 2 556.05 | 4 366.12 | 170.82 |
50 | 4 230.00 | 75.00 | 694.69 | 810.89 | 116.73 | |
50 | N.D. | N.D. | N.D. | |||
pH值 | 50 | 9.44 | 7.02 | 7.64 | 0.40 | 5.22 |
Table 1 Statistical analysis of groundwater chemical indexes in the study area
组分 | 样本量 | 组分浓度/(mg·L-1) | 组分浓度标准差/ (mg·L-1) | 变异系数/% | ||
---|---|---|---|---|---|---|
极大值 | 极小值 | 均值 | ||||
TDS | 50 | 63 000.00 | 557.00 | 7 836.59 | 11 584.12 | 147.82 |
K+ | 50 | 284.00 | 0.62 | 30.90 | 55.28 | 178.89 |
Na+ | 50 | 11 522.00 | 63.00 | 1 541.19 | 2 248.71 | 145.91 |
Ca2+ | 50 | 1 370.00 | 30.50 | 226.05 | 254.88 | 112.75 |
Mg2+ | 50 | 1 494.00 | 23.70 | 215.14 | 279.27 | 129.81 |
50 | 1 740.00 | 97.00 | 596.21 | 260.01 | 43.61 | |
Cl- | 50 | 21 053.00 | 56.00 | 2 556.05 | 4 366.12 | 170.82 |
50 | 4 230.00 | 75.00 | 694.69 | 810.89 | 116.73 | |
50 | N.D. | N.D. | N.D. | |||
pH值 | 50 | 9.44 | 7.02 | 7.64 | 0.40 | 5.22 |
单位面积DIC储量/(g·m-2) | 分布范围 | 碳储量 | |||
---|---|---|---|---|---|
面积/km2 | 占比/% | 储量/t | 占比/% | ||
<500 | 1 427.92 | 13.82 | 0.36×106 | 4.39 | |
500<1 000 | 7 091.81 | 68.65 | 5.32×106 | 65.47 | |
1 000<1 500 | 1 533.59 | 14.84 | 1.92×106 | 23.60 | |
1 5002 000 | 165.07 | 1.60 | 0.29×106 | 3.56 | |
>2 000 | 112.64 | 1.09 | 0.24×106 | 2.98 | |
总计 | 10 331.03 | 100 | 8.13×106 | 100 |
Table 2 Estimation of DIC storage in shallow groundwater
单位面积DIC储量/(g·m-2) | 分布范围 | 碳储量 | |||
---|---|---|---|---|---|
面积/km2 | 占比/% | 储量/t | 占比/% | ||
<500 | 1 427.92 | 13.82 | 0.36×106 | 4.39 | |
500<1 000 | 7 091.81 | 68.65 | 5.32×106 | 65.47 | |
1 000<1 500 | 1 533.59 | 14.84 | 1.92×106 | 23.60 | |
1 5002 000 | 165.07 | 1.60 | 0.29×106 | 3.56 | |
>2 000 | 112.64 | 1.09 | 0.24×106 | 2.98 | |
总计 | 10 331.03 | 100 | 8.13×106 | 100 |
单位面积碳汇量/(g·m-2) | 分布范围 | 碳汇量 | |||
---|---|---|---|---|---|
面积/m2 | 占比/% | 碳汇/t | 占比/% | ||
<300 | 3 198.68 | 30.96 | 0.58×106 | 14.03 | |
300<600 | 6 222.48 | 60.23 | 2.80×106 | 68.21 | |
600900 | 753.57 | 7.29 | 0.57×106 | 13.77 | |
>900 | 156.31 | 1.51 | 0.16×106 | 4.00 | |
总计 | 10 331.03 | 100 | 4.11×106 | 100 |
Table 3 Estimation of carbon sink capacity of shallow groundwater
单位面积碳汇量/(g·m-2) | 分布范围 | 碳汇量 | |||
---|---|---|---|---|---|
面积/m2 | 占比/% | 碳汇/t | 占比/% | ||
<300 | 3 198.68 | 30.96 | 0.58×106 | 14.03 | |
300<600 | 6 222.48 | 60.23 | 2.80×106 | 68.21 | |
600900 | 753.57 | 7.29 | 0.57×106 | 13.77 | |
>900 | 156.31 | 1.51 | 0.16×106 | 4.00 | |
总计 | 10 331.03 | 100 | 4.11×106 | 100 |
[1] |
CHEN J L, WILSON C R, TAPLEY B D. Contribution of ice sheet and mountain glacier melt to recent sea level rise[J]. Nature Geoscience, 2013, 6(7): 549-552.
DOI URL |
[2] |
BROECKER W S, TAKAHASHI T, SIMPSON H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget[J]. Science, 1979, 206(4417): 409-418.
DOI URL |
[3] |
HOUGHTON R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347.
DOI URL |
[4] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
DOI URL |
[5] |
DORE J E, LUKAS R, SADLER D W, et al. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean[J]. Nature, 2003, 424(6950): 754-757.
DOI URL |
[6] |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371.
DOI URL |
[7] | 王树涛, 门明新, 刘微, 等. 农田土壤固碳作用对温室气体减排的影响[J]. 生态环境, 2007, 16(6): 1775-1780. |
[8] | 韩冰, 王效科, 欧阳志云. 中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J]. 生态农村环境, 2005, 21(4): 6-11. |
[9] | 刘波, 何师意. 洪湖湿地地质碳汇效应初步研究[J]. 资源环境与工程, 2016, 30(6): 862-871. |
[10] |
DETWILER R P, HALL C A S. Tropical forests and the global carbon cycle[J]. Science, 1988, 239(4835): 42-47.
DOI URL |
[11] | 赵敏, 周广胜. 中国森林生态系统的植物碳贮量及其影响因子分析[J]. 地理科学, 2004, 24(1): 50-54. |
[12] |
LIU Z H, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191.
DOI URL |
[13] | 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(增刊1): 95-102. |
[14] | 孙海龙, 刘再华, 杨睿, 等. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义[J]. 地球与环境, 2017, 45(1): 57-65. |
[15] | 林云, 梁家乐, 武亚遵, 等. 许家沟泉域岩溶地下水δ13CDIC特征及碳汇效应[J]. 干旱区资源与环境, 2021, 35(1): 146-153. |
[16] | 康志强, 梁礼革, 何师意, 等. 广西弄拉表层岩溶动力系统水循环碳汇效应研究[J]. 地球学报, 2014, 35(4): 481-486. |
[17] | 曹星星, 吴攀, 杨诗笛, 等. 贵州威宁草海流域地下水水化学特征及无机碳通量估算[J]. 环境科学, 2021, 42(4): 1761-1771. |
[18] | 黄奇波, 覃小群, 刘朋雨, 等. 山西柳林泉域岩溶地下水溶解无机碳特征及控制因素[J]. 地质论评, 2019, 65(4): 961-972. |
[19] | 尹立河, 李瑛, 窦妍, 等. 鄂尔多斯高原地下水固碳能力研究[J]. 人民黄河, 2012, 34(2): 55-56, 59. |
[20] | 宋超, 王攀, 韩贵琳, 等. 黄土塬区浅层地下水化学特征及其碳循环意义[J]. 南水北调与水利科技, 2017, 15(5): 121-126. |
[21] |
LIU H, LIU Z H, MACPHERSON G L, et al. Diurnal hydrochemical variations in a Karst spring and two ponds, Maolan Karst Experimental Site, China: biological pump effects[J]. Journal of Hydrology, 2015, 522: 407-417.
DOI URL |
[22] |
ZENG C, LIU Z H, ZHAO M, et al. Hydrologically-driven variations in the Karst-related carbon sink fluxes: insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90.
DOI URL |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[3] | LI Dong, ZHAO Min, LIU Zaihua, CHEN Bo. Dual carbon isotope (δ13C-Δ14C) characteristics and carbon footprint in the spring-pond systems at the Puding Karst Water-Carbon Cycle Test Site [J]. Earth Science Frontiers, 2022, 29(3): 155-166. |
[4] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[5] | LIN Congye, SUN Zhanxue, GAO Bai, HUA Enxiang, ZHANG Haiyang, YANG Fen, GAO Yang, JIANG Wenbo, JIANG Xinyue. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China [J]. Earth Science Frontiers, 2021, 28(5): 49-58. |
[6] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[7] | ZHANG Jingtao, SHI Zheming, WANG Guangcai, JIANG Jun, YANG Bingchao. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(4): 194-205. |
[8] | LIAO Lei,HE Jiangtao,PENG Cong,ZHANG Zhenguo,WANG Lei. Methodologies in calculating apparent background values of minor components in groundwater: a case study of the Liujiang Basin [J]. Earth Science Frontiers, 2018, 25(1): 267-275. |
[9] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||