Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (4): 194-205.DOI: 10.13745/j.esf.sf.2020.6.40
Previous Articles Next Articles
ZHANG Jingtao1,2(), SHI Zheming1,*(), WANG Guangcai1, JIANG Jun3, YANG Bingchao3
Received:
2020-05-12
Revised:
2020-10-20
Online:
2021-07-25
Published:
2021-07-25
Contact:
SHI Zheming
CLC Number:
ZHANG Jingtao, SHI Zheming, WANG Guangcai, JIANG Jun, YANG Bingchao. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(4): 194-205.
水样类型 | 野外编号 | ρB/(mg•L-1) | pH值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Cl- | | | | TDS | |||
山区泉水 | W142 | 13.5 | 141 | 66.7 | 35.6 | 147 | 183 | 276 | — | 838 | 8.48 |
冲洪积平原潜水 | TK1-1 | 4.57 | 96.2 | 59.4 | 20.5 | 136 | 131 | 144 | 1.11 | 508 | 8.12 |
TK2-1 | 2.98 | 55.1 | 31.9 | 6.94 | 49.4 | 50.9 | 132 | 0.64 | 280 | 8.20 | |
W67 | 3.97 | 122 | 20.1 | 17.5 | 111 | 139 | 97.8 | 0.86 | 536 | 8.76 | |
W137 | 5.37 | 356 | 58.2 | 29.2 | 422 | 337 | 80.0 | — | 1 194 | 7.78 | |
冲洪积平原承压水 | TK1-2 | 4.37 | 75.0 | 52.8 | 15.5 | 102 | 87.1 | 150 | 0.88 | 398 | 8.13 |
TK2-2 | 3.97 | 35.6 | 33.8 | 10.5 | 47.8 | 30.1 | 141 | 0.79 | 228 | 8.25 | |
冲洪积平原前缘潜水 | W7 | 6.16 | 126 | 239 | 43.8 | 150 | 712 | 198 | — | 1 408 | 7.89 |
W150 | 10.5 | 681 | 659 | 23.4 | 671 | 2 214 | 193 | — | 4 840 | 7.88 | |
W164 | 11.5 | 586 | 641 | 53.6 | 507 | 2 310 | 136 | — | 3 810 | 7.83 | |
W152 | 101 | 5 713 | 313 | 482 | 8 827 | 2 695 | 652 | — | 18 940 | 7.92 | |
细土平原泉水 | W9 | 6.16 | 85.1 | 94.0 | 37.5 | 132 | 260 | 184 | — | 806 | 7.86 |
W20 | 5.76 | 81.1 | 61.8 | 29.7 | 131 | 144 | 178 | — | 660 | 8.00 | |
W83 | 4.57 | 67.7 | 45.8 | 17.5 | 91.8 | 78.9 | 166 | — | 432 | 8.19 | |
W84 | 4.77 | 69.5 | 54.6 | 16.6 | 93.6 | 73.2 | 204 | — | 438 | 7.65 | |
W43 | 5.17 | 65.8 | 51.4 | 18.5 | 84.7 | 77.0 | 204 | — | 530 | 7.78 | |
W54 | 3.97 | 109 | 49.0 | 18.0 | 136 | 110 | 169 | 0.73 | 532 | 8.30 | |
W89 | 3.58 | 56.8 | 39.4 | 14.1 | 67.1 | 57.8 | 163 | — | 366 | 8.12 | |
盐沼平原地下水 | W169 | 13.3 | 264 | 58.2 | 47.5 | 404 | 250 | 172 | — | 1 344 | 8.14 |
W176 | 25.0 | 633 | 177 | 102 | 932 | 789 | 308 | — | 3 032 | 8.08 | |
W177 | 6 357 | 109 100 | 361 | 15 943 | 173 010 | 67 376 | 1.0 | — | 383 640 | 8.65 | |
河水 | W13 | 4.37 | 58.6 | 71.5 | 28.3 | 49.4 | 231 | 157 | — | 570 | 8.34 |
W57 | 2.58 | 97.4 | 73.9 | 23.9 | 115 | 189 | 181 | 1.15 | 652 | 8.48 | |
W58 | 4.57 | 122 | 120 | 39.9 | 141 | 390 | 172 | — | 970 | 8.37 | |
W10 | 4.57 | 73.3 | 61.0 | 24.8 | 106 | 141 | 163 | — | 548 | 8.38 | |
W44 | 8.15 | 126 | 69.1 | 54.1 | 150 | 120 | 441 | — | 826 | 8.40 | |
W178 | 6.95 | 150 | 69.9 | 38.0 | 185 | 110 | 358 | 0.81 | 850 | 8.48 | |
湖水 | W90 | 735 | 39 425 | 482 | 2 643 | 68 851 | 6 545 | 335 | — | 122 840 | 8.48 |
Table 1 Results of statistical analysis of hydrogeochemical compositions of piedmont spring and groundwater in the alluvial-proluvial plain
水样类型 | 野外编号 | ρB/(mg•L-1) | pH值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Cl- | | | | TDS | |||
山区泉水 | W142 | 13.5 | 141 | 66.7 | 35.6 | 147 | 183 | 276 | — | 838 | 8.48 |
冲洪积平原潜水 | TK1-1 | 4.57 | 96.2 | 59.4 | 20.5 | 136 | 131 | 144 | 1.11 | 508 | 8.12 |
TK2-1 | 2.98 | 55.1 | 31.9 | 6.94 | 49.4 | 50.9 | 132 | 0.64 | 280 | 8.20 | |
W67 | 3.97 | 122 | 20.1 | 17.5 | 111 | 139 | 97.8 | 0.86 | 536 | 8.76 | |
W137 | 5.37 | 356 | 58.2 | 29.2 | 422 | 337 | 80.0 | — | 1 194 | 7.78 | |
冲洪积平原承压水 | TK1-2 | 4.37 | 75.0 | 52.8 | 15.5 | 102 | 87.1 | 150 | 0.88 | 398 | 8.13 |
TK2-2 | 3.97 | 35.6 | 33.8 | 10.5 | 47.8 | 30.1 | 141 | 0.79 | 228 | 8.25 | |
冲洪积平原前缘潜水 | W7 | 6.16 | 126 | 239 | 43.8 | 150 | 712 | 198 | — | 1 408 | 7.89 |
W150 | 10.5 | 681 | 659 | 23.4 | 671 | 2 214 | 193 | — | 4 840 | 7.88 | |
W164 | 11.5 | 586 | 641 | 53.6 | 507 | 2 310 | 136 | — | 3 810 | 7.83 | |
W152 | 101 | 5 713 | 313 | 482 | 8 827 | 2 695 | 652 | — | 18 940 | 7.92 | |
细土平原泉水 | W9 | 6.16 | 85.1 | 94.0 | 37.5 | 132 | 260 | 184 | — | 806 | 7.86 |
W20 | 5.76 | 81.1 | 61.8 | 29.7 | 131 | 144 | 178 | — | 660 | 8.00 | |
W83 | 4.57 | 67.7 | 45.8 | 17.5 | 91.8 | 78.9 | 166 | — | 432 | 8.19 | |
W84 | 4.77 | 69.5 | 54.6 | 16.6 | 93.6 | 73.2 | 204 | — | 438 | 7.65 | |
W43 | 5.17 | 65.8 | 51.4 | 18.5 | 84.7 | 77.0 | 204 | — | 530 | 7.78 | |
W54 | 3.97 | 109 | 49.0 | 18.0 | 136 | 110 | 169 | 0.73 | 532 | 8.30 | |
W89 | 3.58 | 56.8 | 39.4 | 14.1 | 67.1 | 57.8 | 163 | — | 366 | 8.12 | |
盐沼平原地下水 | W169 | 13.3 | 264 | 58.2 | 47.5 | 404 | 250 | 172 | — | 1 344 | 8.14 |
W176 | 25.0 | 633 | 177 | 102 | 932 | 789 | 308 | — | 3 032 | 8.08 | |
W177 | 6 357 | 109 100 | 361 | 15 943 | 173 010 | 67 376 | 1.0 | — | 383 640 | 8.65 | |
河水 | W13 | 4.37 | 58.6 | 71.5 | 28.3 | 49.4 | 231 | 157 | — | 570 | 8.34 |
W57 | 2.58 | 97.4 | 73.9 | 23.9 | 115 | 189 | 181 | 1.15 | 652 | 8.48 | |
W58 | 4.57 | 122 | 120 | 39.9 | 141 | 390 | 172 | — | 970 | 8.37 | |
W10 | 4.57 | 73.3 | 61.0 | 24.8 | 106 | 141 | 163 | — | 548 | 8.38 | |
W44 | 8.15 | 126 | 69.1 | 54.1 | 150 | 120 | 441 | — | 826 | 8.40 | |
W178 | 6.95 | 150 | 69.9 | 38.0 | 185 | 110 | 358 | 0.81 | 850 | 8.48 | |
湖水 | W90 | 735 | 39 425 | 482 | 2 643 | 68 851 | 6 545 | 335 | — | 122 840 | 8.48 |
主要矿物及气体 | 主要矿物饱和指数 | |||
---|---|---|---|---|
极小值 | 极大值 | 均值 | 标准差 | |
SI(方解石) | -0.33 | 1.58 | 0.68 | 0.45 |
SI(白云石) | -0.86 | 5.21 | 1.15 | 1.28 |
SI(岩盐) | -7.31 | 0.47 | -5.80 | 1.78 |
SI(石膏) | -2.32 | 0.48 | -1.28 | 0.73 |
SI(钠长石) | -12.68 | 1.99 | -6.11 | 3.36 |
SI(钙长石) | -11.88 | -2.29 | -7.21 | 2.26 |
SI(钾长石) | -11.53 | 2.65 | -4.98 | 3.29 |
SI(绿泥石) | -9.67 | 24.13 | 3.26 | 12.79 |
SI(石英) | -4.45 | -1.06 | -2.55 | 0.98 |
SI(伊利石) | -17.84 | 2.78 | -6.37 | 5.75 |
SI(高岭石) | -13.77 | 2.58 | -3.21 | 5.54 |
SI(蒙脱石) | -21.37 | 0.02 | -7.49 | 7.15 |
SI CO2(g) | -10.38 | -2.29 | -5.03 | 3.24 |
Table 2 List of saturation indices of major minerals in the study area
主要矿物及气体 | 主要矿物饱和指数 | |||
---|---|---|---|---|
极小值 | 极大值 | 均值 | 标准差 | |
SI(方解石) | -0.33 | 1.58 | 0.68 | 0.45 |
SI(白云石) | -0.86 | 5.21 | 1.15 | 1.28 |
SI(岩盐) | -7.31 | 0.47 | -5.80 | 1.78 |
SI(石膏) | -2.32 | 0.48 | -1.28 | 0.73 |
SI(钠长石) | -12.68 | 1.99 | -6.11 | 3.36 |
SI(钙长石) | -11.88 | -2.29 | -7.21 | 2.26 |
SI(钾长石) | -11.53 | 2.65 | -4.98 | 3.29 |
SI(绿泥石) | -9.67 | 24.13 | 3.26 | 12.79 |
SI(石英) | -4.45 | -1.06 | -2.55 | 0.98 |
SI(伊利石) | -17.84 | 2.78 | -6.37 | 5.75 |
SI(高岭石) | -13.77 | 2.58 | -3.21 | 5.54 |
SI(蒙脱石) | -21.37 | 0.02 | -7.49 | 7.15 |
SI CO2(g) | -10.38 | -2.29 | -5.03 | 3.24 |
矿物相 | 化学式 | 摩尔浓度变化/(mmol•L-1) | |
---|---|---|---|
W142→W137 | W137→W176 | ||
方解石 | CaCO3 | -1.255 | -7.245 |
白云石 | CaMg(CO3)2 | -0.336 | 5.886 |
岩盐 | NaCl | 7.976 | 13.130 |
石膏 | CaSO4·2H2O | 1.701 | 4.313 |
CO2(g) | CO2 | -1.684 | * |
NaX | NaX | 0.809 | 0.356 |
CaX2 | CaX2 | -0.405 | -0.178 |
钠长石 | NaAlSi3O8 | 0.000 1 | 0.280 |
钙长石 | CaAl2Si2O8 | * | 0.420 |
石英 | SiO2 | 0.001 | * |
绿泥石 | Mg5Al2Si3O10(OH)6 | * | -0.560 |
Table 3 Results of the reverse hydrogeochemical simulation
矿物相 | 化学式 | 摩尔浓度变化/(mmol•L-1) | |
---|---|---|---|
W142→W137 | W137→W176 | ||
方解石 | CaCO3 | -1.255 | -7.245 |
白云石 | CaMg(CO3)2 | -0.336 | 5.886 |
岩盐 | NaCl | 7.976 | 13.130 |
石膏 | CaSO4·2H2O | 1.701 | 4.313 |
CO2(g) | CO2 | -1.684 | * |
NaX | NaX | 0.809 | 0.356 |
CaX2 | CaX2 | -0.405 | -0.178 |
钠长石 | NaAlSi3O8 | 0.000 1 | 0.280 |
钙长石 | CaAl2Si2O8 | * | 0.420 |
石英 | SiO2 | 0.001 | * |
绿泥石 | Mg5Al2Si3O10(OH)6 | * | -0.560 |
[1] |
SUN Z Y, MA R, WANG Y X, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological Processes, 2016, 30(12):1884-1902.
DOI URL |
[2] |
BARBECOT F, MARLIN C, GIBERT E, et al. Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France)[J]. Applied Geochemistry, 2000, 15(6):791-805.
DOI URL |
[3] |
SIKDAR P K, SARKAR S S, PALCHOUDHURY S. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India[J]. Journal of Asian Earth Sciences, 2001, 19(5):579-594.
DOI URL |
[4] |
YE C Y, ZHENG M P, WANG Z M, et al. Hydrochemical characteristics and sources of brines in the Gasikule salt lake, Northwest Qaidam Basin, China[J]. Geochemical Journal, 2015, 49(5):481-494.
DOI URL |
[5] |
XIAO Y, SHAO J L, CUI Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China[J]. Journal of Earth System Science, 2017, 126(2):1-16.
DOI URL |
[6] | 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4):734-743. |
[7] |
YANG N, WANG G C, SHI Z M, et al. Application of multiple approaches to investigate the hydrochemistry evolution of groundwater in an arid region: Nomhon, northwestern China[J]. Water, 2018, 10(11):1-18.
DOI URL |
[8] | 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. |
[9] |
WANG J J, LIANG X, LIU Y F, et al. Hydrogeochemical evolution along groundwater flow paths in the manas river basin, Northwest China[J]. Groundwater, 2019, 57(4):575-589.
DOI URL |
[10] | 张勇, 杨庆云. 大柴旦镇幅区域水文地质普查报告[R]. 西宁: 青海省地质局, 1983: 50-51. |
[11] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
DOI URL |
[12] | 党慧慧, 董军, 岳宁, 等. 贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究[J]. 冰川冻土, 2015, 37(3):793-802. |
[13] | XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70/71:250-264. |
[14] | ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8):1535-1548. |
[15] |
WANG H, JIANG X W, WAN L, et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology, 2015, 527:433-441.
DOI URL |
[16] | SCHOELLER H. Qualitative evaluation of groundwater resources[M]//Methods and techniques of groundwater investigation and development. Paris: United Nations Educational, Scientific and Cultural Organization, 1967, 33:54-83. |
[17] |
ZHU B Q, WANG X M, RIOUAL P. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China[J]. Journal of Hydrology, 2017, 549:92-113.
DOI URL |
[18] | FARID I, TRABELSI R, ZOUARI K, et al. Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia[J]. Environmental Earth Sciences, 2013, 68(5):1215-1231. |
[19] | 吕晓立, 孙继朝, 刘景涛, 等. “三滩”水源地地下水演化及地球化学模拟[J]. 人民黄河, 2014, 36(10):84-88. |
[20] |
SOUMYA B S, SEKHAR M, RIOTTE J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, South India[J]. Geoderma, 2011, 165(1):12-24.
DOI URL |
[21] | 高春亮, 张丽莎, 余俊清, 等. 大柴旦盐湖卤水演变及环境变化的矿物学记录[J]. 地球化学, 2011, 40(2):156-162. |
[22] | 高春亮, 余俊清, 闵秀云, 等. 大柴旦盐湖化学沉积特征及其控制因素[J]. 盐湖研究, 2015, 23(1):22-29. |
[1] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[2] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[3] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[4] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[5] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[6] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[7] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[8] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[9] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[10] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[11] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[12] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[13] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[14] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[15] | FAN Fu, HOU Xianhua, ZHENG Mianping, MENG Fanwei, YANG Zhenjing, MIAO Qing. Homogenization temperature of fluid inclusions in Early-Middle Pleistocene halite from Liang Hole ZK02 in Dalangtan area, Qaidam Basin and its constraints on potash mineralization [J]. Earth Science Frontiers, 2021, 28(6): 105-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||