Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 218-226.DOI: 10.13745/j.esf.sf.2020.5.49
Previous Articles Next Articles
LUO Shaoyong1(), ZHOU Yuefei2, LIU Xing1,*(
)
Received:
2020-04-20
Revised:
2020-06-28
Online:
2020-09-25
Published:
2020-09-25
Contact:
LIU Xing
CLC Number:
LUO Shaoyong, ZHOU Yuefei, LIU Xing. Effect of apatite on the stability of ferrihydrite in lacustrine sediments[J]. Earth Science Frontiers, 2020, 27(5): 218-226.
实验编号 | 距水-沉积物界面不同深度处水铁矿磁化率/ (10-8 m3·kg-1) | ||||
---|---|---|---|---|---|
10 cm | 20 cm | 30 cm | 40 cm | 50 cm | |
A11 | 201 | 198 | 189 | 178 | 205 |
A12 | 407 | 501 | 477 | 638 | 325 |
A21 | 190 | 191 | 191 | 188 | 190 |
A22 | 18 478 | 23 664 | 6 282 | 3 579 | 8 565 |
B11 | 287 | 254 | 246 | 247 | 257 |
B12 | 245 | 242 | 239 | 239 | 250 |
B21 | 429 | 953 | 1203 | 408 | 559 |
B22 | 22 632 | 19 926 | 879 | 4 046 | 696 |
Table 1 Magnetic susceptibilities of ferrihydrite samples
实验编号 | 距水-沉积物界面不同深度处水铁矿磁化率/ (10-8 m3·kg-1) | ||||
---|---|---|---|---|---|
10 cm | 20 cm | 30 cm | 40 cm | 50 cm | |
A11 | 201 | 198 | 189 | 178 | 205 |
A12 | 407 | 501 | 477 | 638 | 325 |
A21 | 190 | 191 | 191 | 188 | 190 |
A22 | 18 478 | 23 664 | 6 282 | 3 579 | 8 565 |
B11 | 287 | 254 | 246 | 247 | 257 |
B12 | 245 | 242 | 239 | 239 | 250 |
B21 | 429 | 953 | 1203 | 408 | 559 |
B22 | 22 632 | 19 926 | 879 | 4 046 | 696 |
实验编号 | 距水-沉积物界面不同深度处样品Fe2+/总Fe比值 | ||||
---|---|---|---|---|---|
10 cm | 20 cm | 30 cm | 40 cm | 50 cm | |
A22 | 3.4 | 2.7 | 0.3 | 0.4 | 0.6 |
B22 | 3.1 | 3.0 | — | — | — |
Table 2 Fe2+ to total Fe ratio for some ferrihydrite samples
实验编号 | 距水-沉积物界面不同深度处样品Fe2+/总Fe比值 | ||||
---|---|---|---|---|---|
10 cm | 20 cm | 30 cm | 40 cm | 50 cm | |
A22 | 3.4 | 2.7 | 0.3 | 0.4 | 0.6 |
B22 | 3.1 | 3.0 | — | — | — |
[1] | SULLIVAN K A, ALLER R C. Diagenetic cycling of arsenic in Amazon shelf sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9):1465-1477. |
[2] | CUMMINGS D E, MARCH A W, BOSTICK B, et al. Evidence for microbial Fe (III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho)[J]. Applied Environmental Microbiology, 2000, 66(1):154-162. |
[3] | ROZEN T F, TAILLEFERT M, TROUWBORST R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography, 2002, 47(5):1346-1354. |
[4] | LOVLEY D R. Microbial Fe (III) reduction in subsurface environments[J]. FEMS Microbiology Reviews, 1997, 20(3/4):305-313. |
[5] | CROWE S, ROBERTS J, WEISENER C, et al. Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria[J]. Geobiology, 2007, 5(1):63-73. |
[6] | ROBERTS A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151:1-47. |
[7] | LOVLEY D R, WMTE D C, PYE K. Reduction of Fe (III) in sediments by sulphate-reducing bacteria[J]. Nature, 1993, 361:436-438. |
[8] |
CANFIELD D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(3):619-632.
DOI URL |
[9] |
ZHOU Y, GAO Y, XIE Q, et al. Reduction and transformation of nanomagnetite and nanomaghemite by a sulfate-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2019, 256(1):66-81.
DOI URL |
[10] | 奚姗姗, 周春财, 刘桂建, 等. 巢湖水体氮磷营养盐时空分布特征[J]. 环境科学, 2016, 37(2):542-547. |
[11] | 余丽燕, 杨浩, 黄昌春, 等. 夏季滇池和入滇河流氮, 磷污染特征[J]. 湖泊科学, 2016, 28(5):961-971. |
[12] | 朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6):1510-1524. |
[13] | ZHU G, QIN B, GAO G. Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance[J]. Chinese Science Bulletin, 2005, 50:577-582. |
[14] |
RUTTENBERG K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482.
DOI URL |
[15] |
HUPFER M, GÄCHTER R, GIOVANOLI R. Transformation of phosphorus species in settling seston and during early sediment diagenesis[J]. Aquatic Sciences, 1995, 57:305-324.
DOI URL |
[16] |
RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042.
DOI URL |
[17] | 于子洋, 杜俊涛, 姚庆祯, 等. 黄河口湿地表层沉积物中磷赋存形态的分析[J]. 环境科学, 2014, 35(3):942-950. |
[18] | 骆少勇, 周跃飞, 刘星. 滇池内源磷释放潜力的区域差异: 来自沉积物磷形态的证据[J]. 矿物学报, 2019, 39(1):15-22. |
[19] |
TRAINA S J, LAPERCHE V. Contaminant bioavailability in soils, sediments, and aquatic environments[J]. Proceedings of the National Academy of Sciences, 1999, 96:3365-3371.
DOI URL |
[20] |
LEYVAL C, BERTHELIN J. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg, and Fe mobilization from minerals and plant growth[J]. Plant and Soil, 1989, 117:103-110.
DOI URL |
[21] |
WELCH S, TAUNTON A, BANFIELD J. Effect of microorganisms and microbial metabolites on apatite dissolution[J]. Geomicrobiology Journal, 2002, 19(3):343-367.
DOI URL |
[22] |
HUTCHENS E, VALSAMI J E, HAROUIYA N, et al. An experimental investigation of the effect of Bacillus megaterium on apatite dissolution[J]. Geomicrobiology Journal, 2006, 23(3/4):177-182.
DOI URL |
[23] |
FENG M H, NGWENYA B T, WANG L, et al. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment[J]. Geochimica et Cosmochimica Acta, 2011, 75(19):5785-5796.
DOI URL |
[24] | 吴峰炜, 汪福顺, 吴明红, 等. 滇池,红枫湖沉积物中总磷, 分态磷及生物硅形态与分布特征[J]. 生态学杂志, 2009, 28(1):88-94. |
[25] | JAMBOR J L, DUTRIZAC J E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide[J]. Chemical Reviews, 1998, 98(7):2549-2586. |
[26] |
REVESZ E, FORTIN D, PAKTUNC D. Reductive dissolution of arsenical ferrihydrite by bacteria[J]. Applied Geochemistry, 2016, 66:129-139.
DOI URL |
[27] | SCHWERTMANN U, CORNELL R M. Iron oxides in the laboratory, preparation and characterization[M]. Weinheim: Wiley-VCH Publisher, 2000: 1-188. |
[28] | 郑大中, 郑若峰. 岩石、土壤、沉积物中氧化亚铁与氧化高铁的分离与测定[J]. 岩矿测试, 1988, 7(1):28-31. |
[29] | 丁仕兵, 刘稚. 重铬酸钾滴定法测定铁矿石中铁含量不确定度的评价和计算[J]. 冶金分析, 2002, 22(1):63-65. |
[30] |
CHEN T, XU H, XIE Q. Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols[J]. Earth and Planetary Science Letters, 2005, 240(3/4):790-802.
DOI URL |
[31] | JOHNSTONE R, KOOP K, LARKUM A. Physical aspects of coral reef lagoon sediments in relation to detritus processing and primary production[J]. Marine Ecology Progress Series, 1990, 232(1):273-283. |
[32] |
CUDENNEC Y, LECERF A. Topotactic transformations of goethite and lepidocrocite into hematite and maghemite[J]. Solid State Sciences, 2005, 7(5):520-529.
DOI URL |
[33] |
GALVEZ N, BARRON V, TORRENT J. Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite[J]. Clays and Clay Minerals, 1999, 47(3):304-311.
DOI URL |
[34] |
GOLTERMAN H. Phosphate release from anoxic sediments or “What did Mortimer really write?”[J]. Hydrobiologia, 2001, 450:99-106.
DOI URL |
[35] | LI Q M, ZHANG W, WANG X X. Phosphorus in interstitial water induced by redox potential in sediment of Dianchi Lake, China[J]. Pedosphere, 2007, 17(6):739-746. |
[36] | BEROVIČ M. Scale-up of citric acid fermentation by redox potential control[J]. Biotechnology and Bioengineering, 1999, 64(5):552-557. |
[37] |
DONG H, FREDRICKSON J K, KENNEDY D W, et al. Mineral transformations associated with the microbial reduction of magnetite[J]. Chemical Geology, 2000, 169(3/4):299-318.
DOI URL |
[38] | NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405:94-97. |
[39] |
STRAUB K L, BENZ M, SCHINK B. Iron metabolism in anoxic environments at near neutral pH[J]. FEMS Microbiology Ecology, 2001, 34(3):181-186.
DOI URL |
[40] | MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy Sciences, 2008, 105(10):3968-3973. |
[41] | SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. National Reviews Microbiology, 2016, 14:651-662. |
[42] |
CHEUNG K H, GU J D. Reduction of chromate (CrO2-4) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria[J]. Chemosphere, 2003, 52(9):1523-1529.
DOI URL |
[43] |
CUDENNEC Y, LECERF A. The transformation of ferrihydrite into goethite or hematite, revisited[J]. Journal of Solid State Chemistry, 2006, 179(3):716-722.
DOI URL |
[44] | CORNELL R M, SCHWERTMANN U. The iron oxides: structure, properties, reactions, occurrences and uses[M]. Weinheim: Wiley-VCH Publisher, 2000: 1-664. |
[45] |
LIU H, LI P, ZHU M, et al. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite[J]. Journal of Solid State Chemistry, 2007, 180(7):2121-2128.
DOI URL |
[46] | BOLAND D D, COLLINS R N, MILLER C J, et al. Effect of Solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J]. Environmental Science & Technology, 2014, 48(10):5477-5485. |
[47] |
SHENG A, LIU J, LI X, et al. Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation[J]. Geochimica et Cosmochimica Acta, 2020, 272:105-120.
DOI URL |
[48] |
HANSEL C M, BENNER S G, FENDORF SCompeting Fe(II)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology, 2005, 39(18):7147-7153.
DOI URL |
[49] | STEWART B D, NICO P S, FENDORF S. Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions[J]. Environmental Science & Technology, 2009, 43(13):4922-4927. |
[50] |
YANG L, STEEFEL C I, MARCUS M A. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions[J]. Environmental Science & Technology, 2010, 44(14):5469-5475.
DOI URL |
[51] | CHEN C, KUKKADAPU R, SPARKS D L. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics[J]. Environmental Science & Technology, 2015, 49(18):10927-10936. |
[1] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[2] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[3] | LIU Jinping, WANG Gaiyun, JIAN Xiaoling, ZHU Chuanqing, HU Xiaoqiang, YUAN Xiaoqiang, WANG Chao. Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin [J]. Earth Science Frontiers, 2024, 31(4): 206-218. |
[4] | ZHENG Jiarui, LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng, WEI Wenxia, SONG Yun. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites—a review [J]. Earth Science Frontiers, 2024, 31(2): 157-172. |
[5] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[6] | JIANG Guo, ZHOU Kefa, WANG Jinlin, BAI Yong, SUN Guoqing, WANG Wei. Identification of lithium-beryllium granitic pegmatites based on deep learning [J]. Earth Science Frontiers, 2023, 30(5): 185-196. |
[7] | HONG Tao, ZHAI Mingguo, WANG Yuejun, LIU Xingcheng, XU Xingwang, GAO Jun, HU Mingxi, MA Jing. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study [J]. Earth Science Frontiers, 2023, 30(5): 93-105. |
[8] | HE Bizhu, JIAO Cunli, LIU Ruohan, CAO Zicheng, CAI Zhihui, LAN Mingjie, YUN Xiaorui, ZHU Ding, JIANG Zhongzheng, YANG Yujie, LI Zhenyu. The paleotectonic and paleogeography reconstructions of the Tarim Basin in the Neoproterozoic and prediction of favorable deep source rock areas [J]. Earth Science Frontiers, 2023, 30(4): 19-42. |
[9] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[10] | HE Zhiliang, LU Jianlin, Lin Juanhua, JIN Xiaohui, QI Lixin, XU Xuhui, HUANG Renchun, WANG Yi. Marine basins in China—a prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns [J]. Earth Science Frontiers, 2022, 29(6): 60-72. |
[11] | ZHANG Yuting, DUAN Liqin, SONG Jinming, ZHANG Naixing, YIN Meiling, LI Xuegang, YUAN Huamao. Arsenic migration and transformation mechanism and microbial regulation at the sediment-water interface of the Changjiang estuary [J]. Earth Science Frontiers, 2022, 29(4): 144-155. |
[12] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[13] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[14] | XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems [J]. Earth Science Frontiers, 2022, 29(3): 189-199. |
[15] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||