Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 189-199.DOI: 10.13745/j.esf.sf.2022.1.32
Previous Articles Next Articles
XIONG Guiyao1(), WU Jichun1,*(), YANG Yun2, ZHU Xiaobin1, LIU Mengwen1, SONG Yalin1
Received:
2021-12-01
Revised:
2022-01-16
Online:
2022-05-25
Published:
2022-04-28
Contact:
WU Jichun
CLC Number:
XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems[J]. Earth Science Frontiers, 2022, 29(3): 189-199.
Fig.3 Conceptual model of physicochemical property and biochemical reaction intensity changes in contaminated media (for conventional organic pollutants)
[1] |
ABDU N, ABDULLAHI A A, ABDULKADIR A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1): 65-84.
DOI URL |
[2] | KARIMI B, TERRAT S, DEQUIEDT S, et al. Biogeography of soil bacteria and Archaea across France[J]. Science Advances, 2018, 4(7): eaat1808. |
[3] |
ZHAO F Z, REN C J, ZHANG L, et al. Changes in soil microbial community are linked to soil carbon fractions after afforestation[J]. European Journal of Soil Science, 2018, 69(2): 370-379.
DOI URL |
[4] |
REED H E, MARTINY J B H. Microbial composition affects the functioning of estuarine sediments[J]. The ISME Journal, 2013, 7(4): 868-879.
DOI URL |
[5] |
STRICKLAND M S, LAUBER C, FIERER N, et al. Testing the functional significance of microbial community composition[J]. Ecology, 2009, 90(2): 441-451.
DOI URL |
[6] |
LIN Y B, YE Y M, HU Y M, et al. The variation in microbial community structure under different heavy metal contamination levels in paddy soils[J]. Ecotoxicology and Environmental Safety, 2019, 180: 557-564.
DOI URL |
[7] | MA Y J, WANG Y T, CHEN Q, et al. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils[J]. Ecological Indicators, 2020, 117: 106626. |
[8] | CHI Z F, HOU L N, LI H, et al. Indigenous bacterial community and function in phenanthrene-polluted coastal wetlands: potential for phenanthrene degradation and relation with soil properties[J]. Environmental Research, 2021, 199: 111357. |
[9] | XUE W, WANG W L, YUAN Q Y, et al. Clonal integration in Phragmites australis alters soil microbial communities in an oil-contaminated wetland[J]. Environmental Pollution, 2020, 265: 114828. |
[10] |
EDDAOUI N, PANFILOV M, GANZER L, et al. Impact of pore clogging by bacteria on underground hydrogen storage[J]. Transport in Porous Media, 2021, 139(1): 89-108.
DOI URL |
[11] | 杨宾, 李慧颖, 伍斌, 等. 4种NAPLs污染物在二维砂箱中的指进锋面形态特征研究[J]. 环境科学, 2013, 34(4): 1545-1552. |
[12] | 邓亚平, 郑菲, 施小清, 等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报(自然科学版), 2016, 52(3): 409-420. |
[13] | 黄英俊. 非均质多孔介质中DNAPL污染过程室内模拟研究[D]. 桂林: 桂林理工大学, 2018. |
[14] |
SMITH J E, ZHANG Z F. Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media[J]. Journal of Contaminant Hydrology, 2001, 48(1/2): 167-183.
DOI URL |
[15] |
NSIR K, SCHÄFER G, ROUPERT R D C, et al. Laboratory experiments on DNAPL gravity fingering in water-saturated porous media[J]. International Journal of Multiphase Flow, 2012, 40: 83-92.
DOI URL |
[16] |
OKUDA N, SHIMIZU T, MURATANI M, et al. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment[J]. Chemosphere, 2014, 114: 59-68.
DOI URL |
[17] | WANG X Y. Dense nonaqueous phase liquid (DNAPL) source zone characterization in highly heterogeneous permeability fields[D]. Medford: Tufts University, 2013. |
[18] | CHRIST J A, LEMKE L D, ABRIOLA L M. Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): migration and entrapment in a nonuniform permeability field[J]. Water Resources Research, 2005, 41(1):1-12. |
[19] |
SCHROTH M H, ISTOK J D, SELKER J S, et al. Multifluid flow in bedded porous media: laboratory experiments and numerical simulations[J]. Advances in Water Resources, 1998, 22(2): 169-183.
DOI URL |
[20] |
BRAIDA W J, PIGNATELLO J J, LU Y F, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science and Technology, 2003, 37(2): 409-417.
DOI URL |
[21] |
SILILO O T N, TELLAM J H. Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems[J]. Ground Water, 2000, 38(6): 864-871.
DOI URL |
[22] | 程洲, 吴吉春, 徐红霞, 等. DNAPL在透镜体及表面活性剂作用下的运移研究[J]. 中国环境科学, 2014, 34(11): 2888-2896. |
[23] | 郑菲, 高燕维, 徐红霞, 等. 非均质性对DNAPL污染源区结构特征影响的实验研究[J]. 水文地质工程地质, 2016, 43(5): 140-148. |
[24] |
LIPSON D S, KUEPER B H, GEFELL M J. Matrix diffusion-derived plume attenuation in fractured bedrock[J]. Ground Water, 2005, 43(1): 30-39.
DOI URL |
[25] |
KAMON M, ENDO K, KAWABATA J, et al. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer[J]. Journal of Hazardous Materials, 2004, 110(1/2/3): 1-12.
DOI URL |
[26] |
LUCIANO A, VIOTTI P, PAPINI M P. Laboratory investigation of DNAPL migration in porous media[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1006-1017.
DOI URL |
[27] |
ERNING K, GRANDEL S, DAHMKE A, et al. Simulation of DNAPL infiltration and spreading behaviour in the saturated zone at varying flow velocities and alternating subsurface geometries[J]. Environmental Earth Sciences, 2012, 65(4): 1119-1131.
DOI URL |
[28] | 刘雪松, 蔡五田, 李胜涛. 石油类污染场地土壤与地下水污染调查实例分析[J]. 水文地质工程地质, 2010, 37(4): 121-125. |
[29] | ZHANG X Y, KONG D W, LIU X Y, et al. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp.[J]. Chemosphere, 2021, 273: 129666. |
[30] |
AHMAD K S. Carbendazole lithospheric adsorption, Saccharum officinarum-based remediation and microbial degradation in heterogeneously composed soils[J]. Environmental Earth Sciences, 2019, 78(1): 1-13.
DOI URL |
[31] |
XIONG J K, LI G Y, AN T C. The microbial degradation of 2, 4, 6-tribromophenol (TBP) in water/sediments interface: investigating bioaugmentation using Bacillus sp. GZT[J]. Science of the Total Environment, 2017, 575: 573-580.
DOI URL |
[32] |
WANG J L, WANG S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582.
DOI URL |
[33] | 刘月涵, 张丽秀, 张小雪, 等. 腐殖酸对镰刀菌ZH-H2降解老化污染土壤4环芳烃效果的影响[J]. 菌物学报, 2021, 40(7): 1788-1799. |
[34] | 赵倩云, 苟雅玲, 杨苏才, 等. 硫酸盐对老化土壤中多环芳烃厌氧降解的影响[J]. 环境科学与技术, 2018, 41(12): 200-205. |
[35] | VARJANI S J, THAKER M B, UPASANI V N. Optimization of growth conditions of native hydrocarbon utilizing bacterial consortium “HUBC” obtained from petroleum pollutant contaminated sites[J]. Indian Journal of Applied Research, 2014, 4 (10): 474-476. |
[36] |
THAMER M, AL-KUBAISI A R, ZAHRAW Z, et al. Biodegradation of Kirkuk light crude oil by Bacillus thuringiensis, Northern of Iraq[J]. Natural Science, 2013, 5(7): 865-873.
DOI URL |
[37] |
CHANDRA S, SHARMA R, SINGH K, et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon[J]. Annals of Microbiology, 2013, 63(2): 417-431.
DOI URL |
[38] |
MEGHARAJ M, RAMAKRISHNAN B, VENKATESWARLU K, et al. Bioremediation approaches for organic pollutants: a critical perspective[J]. Environment International, 2011, 37(8): 1362-1375.
DOI URL |
[39] |
ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699.
DOI URL |
[40] |
MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. Journal of Molecular Microbiology and Biotechnology, 2016, 26(1/2/3): 92-118.
DOI URL |
[41] |
WILKES H, BUCKEL W, GOLDING B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2016, 26(1/2/3): 138-151.
DOI URL |
[42] |
VARJANI S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223: 277-286.
DOI URL |
[43] | DAS N, CHANDRAN P. Microbial degradation of petroleum hydrocarbon contaminants: an overview[J]. Biotechnology Research International, 2011, 2011: 941810. |
[44] | PEIXOTO R S, VERMELHO A B, ROSADO A S. Petroleum-degrading enzymes: bioremediation and new prospects[J]. Enzyme Research, 2011, 2011: 475193. |
[45] |
TOWELL M G, PATON G I, SEMPLE K T. The biodegradation of cable oil components: impact of oil concentration, nutrient addition and bioaugmentation[J]. Environmental Pollution, 2011, 159(12): 3777-3783.
DOI URL |
[46] |
VARJANI S J, UPASANI V N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514[J]. Bioresource Technology, 2016, 222: 195-201.
DOI URL |
[47] |
GHAZALI F M, RAHMAN R N Z A, SALLEH A B, et al. Biodegradation of hydrocarbons in soil by microbial consortium[J]. International Biodeterioration and Biodegradation, 2004, 54(1): 61-67.
DOI URL |
[48] |
BAGI A, PAMPANIN D M, BRAKSTAD O G, et al. Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach[J]. Marine Environmental Research, 2013, 89: 83-90.
DOI URL |
[49] |
GUARINO C, SPADA V, SCIARRILLO R. Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation-assistited landfarming) for a petroleum hydrocarbons contaminated soil[J]. Chemosphere, 2017, 170: 10-16.
DOI URL |
[50] |
SOLEIMANI S, VAN GEEL P J, ISGOR O B, et al. Modeling of biological clogging in unsaturated porous media[J]. Journal of Contaminant Hydrology, 2009, 106(1/2): 39-50.
DOI URL |
[51] |
MOSTAFA M, VAN GEEL P J. Conceptual models and simulations for biological clogging in unsaturated soils[J]. Vadose Zone Journal, 2007, 6(1): 175-185.
DOI URL |
[52] |
ROSS N, VILLEMUR R, DESCHÊNES L, et al. Clogging of a limestone fracture by stimulating groundwater microbes[J]. Water Research, 2001, 35(8): 2029-2037.
DOI URL |
[53] | RUSU C, CHENG X H, LI M. Biological clogging in Tangshan sand columns under salt water intrusion by Sporosarcina pasteurii[J]. Advanced Materials Research, 2011, 250/251/252/253: 2040-2046. |
[54] |
DUPIN H J, MCCARTY P L. Impact of colony morphologies and disinfection on biological clogging in porous media[J]. Environmental Science and Technology, 2000, 34(8): 1513-1520.
DOI URL |
[55] |
BERLIN M, SURESH KUMAR G, NAMBI I M. Numerical modeling of biological clogging on transport of nitrate in an unsaturated porous media[J]. Environmental Earth Sciences, 2015, 73(7): 3285-3298.
DOI URL |
[56] |
MOHANADHAS B, KUMAR G S. Numerical experiments on fate and transport of benzene with biological clogging in vadoze zone[J]. Environmental Processes, 2019, 6(4): 841-858.
DOI URL |
[57] |
GUO H, YAO J, CAI M M, et al. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity[J]. Chemosphere, 2012, 87(11): 1273-1280.
DOI URL |
[58] |
GE T D, NIE S A, WU J S, et al. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study[J]. Journal of Soils and Sediments, 2011, 11(1): 25-36.
DOI URL |
[59] |
KÖGEL-KNABNER I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139-162.
DOI URL |
[60] | 高尚, 王磊, 龙涛, 等. 污染地块中高密度非水相液体(DNAPLs)迁移特征及判定调查技术研究进展[J]. 生态与农村环境学报, 2018, 34(4): 289-299. |
[61] | 浦烨枫, 江思珉, 栗现文, 等. DNAPLs在低渗透性夹层影响下的迁移和分布特征研究[J]. 工程勘察, 2015, 43(12): 43-47. |
[62] | 胡黎明, 邢巍巍, 吴照群. 多孔介质中非水相流体运移的数值模拟[J]. 岩土力学, 2007, 28(5): 951-955. |
[63] |
LEAHY J G, COLWELL R R. Microbial degradation of hydrocarbons in the environment[J]. Microbiological Reviews, 1990, 54(3): 305-315.
DOI URL |
[64] |
ALCALDE M, FERRER M, PLOU F J, et al. Environmental biocatalysis: from remediation with enzymes to novel green processes[J]. Trends in Biotechnology, 2006, 24(6): 281-287.
DOI URL |
[65] |
KAUPPI S, SINKKONEN A, ROMANTSCHUK M. Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation[J]. International Biodeterioration and Biodegradation, 2011, 65(2): 359-368.
DOI URL |
[66] |
ADMON S, GREEN M, AVNIMELECH Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge[J]. Bioremediation Journal, 2001, 5(3): 193-209.
DOI URL |
[67] |
ATLAS R M. Microbial degradation of petroleum hydrocarbons: an environmental perspective[J]. Microbiological Reviews, 1981, 45(1): 180-209.
DOI URL |
[68] |
RUBERTO L, VAZQUEZ S C, MAC CORMACK W P. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil[J]. International Biodeterioration and Biodegradation, 2003, 52(2): 115-125.
DOI URL |
[69] |
HEIDER J, SPORMANN A M, BELLER H R, et al. Anaerobic bacterial metabolism of hydrocarbons[J]. FEMS Microbiology Reviews, 1998, 22(5): 459-473.
DOI URL |
[70] |
BOLL M, LÖFFLER C, MORRIS B E L, et al. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes[J]. Environmental Microbiology, 2014, 16(3): 612-627.
DOI URL |
[71] |
WEELINK S A B, VAN DOESBURG W, SAIA F T, et al. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor[J]. FEMS Microbiology Ecology, 2009, 70(3): 575-585.
DOI URL |
[72] | YA T, DU S, LI Z Y, et al. Successional dynamics of molecular ecological network of anammox microbial communities under elevated salinity[J]. Water Research, 2021, 188: 116540. |
[73] |
VAN HORN D J, OKIE J G, BUELOW H N, et al. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert[J]. Applied and Environmental Microbiology, 2014, 80(10): 3034-3043.
DOI URL |
[74] |
CHOWDHURY N, MARSCHNER P, BURNS R G. Soil microbial activity and community composition: impact of changes in matric and osmotic potential[J]. Soil Biology and Biochemistry, 2011, 43(6): 1229-1236.
DOI URL |
[75] |
YANG J, MA L A, JIANG H C, et al. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan lakes[J]. Scientific Reports, 2016, 6(1): 1-6.
DOI URL |
[76] | ZHANG K P, SHI Y, CUI X Q, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. mSystems, 2019, 4(1): e00218-e00225. |
[77] |
DE LEÓN-LORENZANA A S, LAURA D B, DOMÍNGUEZ-MENDOZA C A, et al. Soil salinity controls relative abundance of specific bacterial groups involved in the decomposition of maize plant residues[J]. Frontiers in Ecology and Evolution, 2018, 6: 1-21.
DOI URL |
[78] | WANG H T, GILBERT J A, ZHU Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631/632: 1342-1349. |
[79] |
MINAI-TEHRANI D, HERFATMANESH A, AZARI-DEHKORDI F, et al. Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil[J]. Pakistan Journal of Biological Sciences, 2006, 9(8):1531-1535.
DOI URL |
[80] | SCHWARZ J R, WALKER J D, COLWELL R R. Growth of deep-sea bacteria on hydrocarbons at ambient and in situ pressure[R]. Washington: American Institute of Biological Sciences, 1974: 239-249. |
[81] |
SCHWARZ J R, WALKER J D, COLWELL R R. Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure[J]. Canadian Journal of Microbiology, 1975, 21(5): 682-687.
DOI URL |
[1] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[2] | HU Zhiping,PENG Jianbing,ZHANG Fei,WANG Rui,CHEN Nannan. The critical issues and creative concepts in the development of urban underground space [J]. Earth Science Frontiers, 2019, 26(3): 76-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||