Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 217-226.DOI: 10.13745/j.esf.sf.2022.1.30
Previous Articles Next Articles
CUI Di1(), YANG Bing2, GUO Huaming1,*(
), LIAN Guoxi2, SUN Juan2
Received:
2021-12-02
Revised:
2022-01-21
Online:
2022-05-25
Published:
2022-04-28
Contact:
GUO Huaming
CLC Number:
CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media[J]. Earth Science Frontiers, 2022, 29(3): 217-226.
柱编号 | pH值 | 铀浓度/ (mg·L-1) | 流速/ (mL·min-1) | (mmol·L-1) | |
---|---|---|---|---|---|
1 | 4 | 2 | 0.1 | 0 | |
2 | 7 | 2 | 0.1 | 0 | |
3 | 8.5 | 2 | 0.1 | 0 | |
4 | 7 | 1 | 0.1 | 0 | |
5 | 7 | 5 | 0.1 | 0 | |
6 | 7 | 2 | 0.5 | 0 | |
7 | 7 | 2 | 0.3 | 0 | |
8 | 7 | 2 | 0.1 | 0.5 | |
9 | 7 | 2 | 0.1 | 1.0 |
Table 1 Experimental conditions in column experiments
柱编号 | pH值 | 铀浓度/ (mg·L-1) | 流速/ (mL·min-1) | (mmol·L-1) | |
---|---|---|---|---|---|
1 | 4 | 2 | 0.1 | 0 | |
2 | 7 | 2 | 0.1 | 0 | |
3 | 8.5 | 2 | 0.1 | 0 | |
4 | 7 | 1 | 0.1 | 0 | |
5 | 7 | 5 | 0.1 | 0 | |
6 | 7 | 2 | 0.5 | 0 | |
7 | 7 | 2 | 0.3 | 0 | |
8 | 7 | 2 | 0.1 | 0.5 | |
9 | 7 | 2 | 0.1 | 1.0 |
柱号 | 饱和含 水率θ | 流速 v/(cm·min-1) | 弥散系数 D/(cm2·min-1) | 弥散度 λ/cm | R2 |
---|---|---|---|---|---|
1 | 0.333 | 0.309 | 0.011 | 0.034 | 0.998 |
2 | 0.411 | 0.308 | 0.012 | 0.037 | 0.998 |
3 | 0.457 | 0.270 | 0.009 | 0.034 | 0.993 |
4 | 0.342 | 0.330 | 0.028 | 0.085 | 0.982 |
5 | 0.346 | 0.342 | 0.018 | 0.053 | 0.995 |
6 | 0.420 | 0.959 | 0.087 | 0.091 | 0.999 |
7 | 0.389 | 0.585 | 0.011 | 0.019 | 0.993 |
8 | 0.405 | 0.297 | 0.021 | 0.072 | 0.985 |
9 | 0.447 | 0.287 | 0.018 | 0.064 | 0.999 |
Table 2 Characteristic hydraulic parameters
柱号 | 饱和含 水率θ | 流速 v/(cm·min-1) | 弥散系数 D/(cm2·min-1) | 弥散度 λ/cm | R2 |
---|---|---|---|---|---|
1 | 0.333 | 0.309 | 0.011 | 0.034 | 0.998 |
2 | 0.411 | 0.308 | 0.012 | 0.037 | 0.998 |
3 | 0.457 | 0.270 | 0.009 | 0.034 | 0.993 |
4 | 0.342 | 0.330 | 0.028 | 0.085 | 0.982 |
5 | 0.346 | 0.342 | 0.018 | 0.053 | 0.995 |
6 | 0.420 | 0.959 | 0.087 | 0.091 | 0.999 |
7 | 0.389 | 0.585 | 0.011 | 0.019 | 0.993 |
8 | 0.405 | 0.297 | 0.021 | 0.072 | 0.985 |
9 | 0.447 | 0.287 | 0.018 | 0.064 | 0.999 |
U初始浓度/ (mg·L-1) | 实验q'e/ (102 mg·g-1) | 准一级动力学 | 准二级动力学 | |||
---|---|---|---|---|---|---|
R2 | qe/(102 mg·g-1) | k2/(g·mg-1·h-1) | R2 | |||
1 | 2.763 | 0.237 | 2.794 | 69.973 | 0.997 | |
2 | 5.268 | 0.443 | 5.357 | 24.928 | 0.993 | |
5 | 22.555 | 0.338 | 22.367 | 12.562 | 0.999 |
Table 3 Parameters of psudo first order and psudo second order kinetic models for uranium adsorption on sandstone
U初始浓度/ (mg·L-1) | 实验q'e/ (102 mg·g-1) | 准一级动力学 | 准二级动力学 | |||
---|---|---|---|---|---|---|
R2 | qe/(102 mg·g-1) | k2/(g·mg-1·h-1) | R2 | |||
1 | 2.763 | 0.237 | 2.794 | 69.973 | 0.997 | |
2 | 5.268 | 0.443 | 5.357 | 24.928 | 0.993 | |
5 | 22.555 | 0.338 | 22.367 | 12.562 | 0.999 |
温度/℃ | Langmuir等温吸附方程 | Freundlich等温吸附方程 | |||||
---|---|---|---|---|---|---|---|
KL | qmax | R2 | KF | 1/n | R2 | ||
10 | 4.309 | 0.088 | 0.990 | 0.076 | 0.582 | 0.979 | |
25 | 7.276 | 0.070 | 0.980 | 0.076 | 0.553 | 0.994 | |
35 | 10.263 | 0.085 | 0.992 | 0.088 | 0.500 | 0.978 | |
45 | 30.325 | 0.105 | 0.994 | 0.149 | 0.453 | 0.969 |
Table 4 Langmuir and Freundlich constants for uranium adsorption on sandstone at different temperatures
温度/℃ | Langmuir等温吸附方程 | Freundlich等温吸附方程 | |||||
---|---|---|---|---|---|---|---|
KL | qmax | R2 | KF | 1/n | R2 | ||
10 | 4.309 | 0.088 | 0.990 | 0.076 | 0.582 | 0.979 | |
25 | 7.276 | 0.070 | 0.980 | 0.076 | 0.553 | 0.994 | |
35 | 10.263 | 0.085 | 0.992 | 0.088 | 0.500 | 0.978 | |
45 | 30.325 | 0.105 | 0.994 | 0.149 | 0.453 | 0.969 |
T/℃ | KL | ΔG0/ (kJ·mol-1) | ΔH0/ (kJ·mol-1) | ΔS0/ (J·mol-1·K-1) |
---|---|---|---|---|
10 | 4.31 | -3.44 | 7.10 | 37.23 |
25 | 7.28 | -4.92 | 40.32 | |
35 | 10.26 | -5.96 | 42.40 | |
45 | 30.33 | -9.02 | 50.69 |
Table 5 Thermodynamic parameters for uranium adsorption on sandstone
T/℃ | KL | ΔG0/ (kJ·mol-1) | ΔH0/ (kJ·mol-1) | ΔS0/ (J·mol-1·K-1) |
---|---|---|---|---|
10 | 4.31 | -3.44 | 7.10 | 37.23 |
25 | 7.28 | -4.92 | 40.32 | |
35 | 10.26 | -5.96 | 42.40 | |
45 | 30.33 | -9.02 | 50.69 |
Fig.4 Breakthrough curves of uranium adsorption in sandstone columns under different conditions a—CU=2 mg/L, Q=0.1 mL/min, C H C O 3 -=0; b—pH=7, Q=0.1 mL/min, C H C O 3 -=0 mmol/L; c—pH=7, CU=2 mg/L, C H C O 3 -=0; and d—pH=7, CU=2 mg/L, Q=0.1 mL/min。
条件 | k'd/(mL·g-1) | ω/(103 min-1) | R2 |
---|---|---|---|
pH=4 | 9.82 | 1.720 | 0.995 |
pH=7 | 117 | 0.182 | 0.997 |
CU=1 mg/L | 159 | 0.122 | 0.936 |
CU=2 mg/L | 117 | 0.182 | 0.997 |
CU=5 mg/L | 23.9 | 0.828 | 0.989 |
流速0.1 mL/min | 117 | 0.182 | 0.974 |
流速0.3 mL/min | 49.5 | 0.604 | 0.977 |
流速0.5 mL/min | 39.5 | 1.228 | 0.997 |
| 117 | 0.182 | 0.997 |
| 58.9 | 0.483 | 0.996 |
| 48.1 | 4.759 | 0.964 |
Table 6 The fitted parameters of breakthrough curves of uranium adsorption in sandstone column
条件 | k'd/(mL·g-1) | ω/(103 min-1) | R2 |
---|---|---|---|
pH=4 | 9.82 | 1.720 | 0.995 |
pH=7 | 117 | 0.182 | 0.997 |
CU=1 mg/L | 159 | 0.122 | 0.936 |
CU=2 mg/L | 117 | 0.182 | 0.997 |
CU=5 mg/L | 23.9 | 0.828 | 0.989 |
流速0.1 mL/min | 117 | 0.182 | 0.974 |
流速0.3 mL/min | 49.5 | 0.604 | 0.977 |
流速0.5 mL/min | 39.5 | 1.228 | 0.997 |
| 117 | 0.182 | 0.997 |
| 58.9 | 0.483 | 0.996 |
| 48.1 | 4.759 | 0.964 |
条件 | 柱实验分配系数 k'd/(mL·g-1) | 批实验分配系数 kd/(mL·g-1) |
---|---|---|
pH=4 | 9.81 | 65.1 |
pH=7 | 117 | 637 |
CU=1 mg/L | 159 | 189 |
CU=2 mg/L | 117 | 133 |
CU=5 mg/L | 23.9 | 55.5 |
| 117 | 133 |
| 58.9 | 83.1 |
| 48.1 | 69.0 |
Table 7 Partition coefficients from column and batch experiments
条件 | 柱实验分配系数 k'd/(mL·g-1) | 批实验分配系数 kd/(mL·g-1) |
---|---|---|
pH=4 | 9.81 | 65.1 |
pH=7 | 117 | 637 |
CU=1 mg/L | 159 | 189 |
CU=2 mg/L | 117 | 133 |
CU=5 mg/L | 23.9 | 55.5 |
| 117 | 133 |
| 58.9 | 83.1 |
| 48.1 | 69.0 |
[1] | 张晓峰, 陈迪云, 彭燕, 等. 丁二酸改性茶油树木屑吸附铀的研究[J]. 环境科学, 2015, 36(5): 1686-1693. |
[2] | 黎广荣, 周义朋, 赵凯, 等. 砂岩型铀矿浸出矿物工艺学研究进展[J]. 有色金属(冶炼部分), 2021(8): 9-19. |
[3] | 左维, 谭凯旋. 新疆某地浸采铀矿山退役井场地下水污染特征[J]. 南华大学学报(自然科学版), 2014, 28(4): 28-34. |
[4] |
FU H Y, DING D X, SUI Y, et al. Transport of uranium(VI) in red soil in South China: influence of initial pH and carbonate concentration[J]. Environmental Science and Pollution Research, 2019, 26(36): 37125-37136.
DOI URL |
[5] |
BRUGGEMAN C, MAES N. Uptake of uranium(VI) by pyrite under boom clay conditions: influence of dissolved organic carbon[J]. Environmental Science and Technology, 2010, 44(11): 4210-4216.
DOI URL |
[6] | 廉欢, 高柏, 郭亚丹, 等. 某尾矿库区水环境中放射性核素铀的变化特征及影响因素[J]. 有色金属(冶炼部分), 2017(5): 64-68. |
[7] |
ZHANG Z B, LIU J, CAO X H, et al. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes[J]. Journal of Hazardous Materials, 2015, 300: 633-642.
DOI URL |
[8] |
GE M T, WANG D J, YANG J W, et al. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: role of U(VI) concentration, pH and ionic strength[J]. Water Research, 2018, 147: 350-361.
DOI URL |
[9] | 惠淑君. 铀在砂岩含水层介质中的吸附和转化特征[D]. 北京: 中国地质大学(北京), 2020. |
[10] | 惠淑君, 杨冰, 郭华明, 等. 不同因素对砂岩含水层介质吸附铀的影响[J]. 地学前缘, 2021, 28(5): 68-78. |
[11] | 丛伟, 张兴昌, 封晔. 不同CDE模型对硒在黄绵土中运移特性的模拟研究[J]. 水土保持学报, 2011, 25(3): 220-224. |
[12] |
MA J, MA Y L, WEI R F, et al. Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation[J]. Chemosphere, 2021, 276: 130012.
DOI URL |
[13] | Šimůnek J, Šejna M, Saito H, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[R]. California: University of California Riverside, 2013. |
[14] |
VAN GENUCHTEN M T, IMUNEK J Å, LEIJ F J, et al. STANMOD: model use, calibration, and validation[J]. Transactions of the ASABE. 2012, 55(4): 1355-1368.
DOI URL |
[15] |
LI S C, WANG X L, HUANG Z Y, et al. Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(3): 877-886.
DOI URL |
[16] | 李松南. 以蛋壳为原料制备多种吸附材料及其铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
[17] | 赵凯. 改性天然菱铁矿除砷性能与应用[D]. 北京: 中国地质大学(北京), 2014. |
[18] | 赵凯, 郭华明, 李媛, 等. 天然菱铁矿改性及强化除砷研究[J]. 环境科学, 2012, 33(2): 459-468. |
[19] |
GUO H M, LI Y, ZHAO K. Arsenate removal from aqueous solution using synthetic siderite[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 174-180.
DOI URL |
[20] |
SHAN Y, GUO H M. Fluoride adsorption on modified natural siderite: optimization and performance[J]. Chemical Engineering Journal, 2013, 223: 183-191.
DOI URL |
[21] | 扶海鹰. 红壤中铀的迁移转化规律及控制方法研究[D]. 衡阳: 南华大学, 2019. |
[22] | 葛孟团. 胡敏酸和针铁矿胶体对U(Ⅵ)在饱和花岗岩颗粒柱中运移的影响研究[D]. 兰州: 兰州大学, 2019. |
[23] |
BACHMAF S, PLANER-FRIEDRICH B, MERKEL B J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite[J]. Radiochimica Acta, 2008, 96(6): 359-366.
DOI URL |
[24] |
YANG Z W, KANG M L, MA B, et al. Inhibition of U(VI) reduction by synthetic and natural pyrite[J]. Environmental Science and Technology, 2014, 48(18): 10716-10724.
DOI URL |
[25] | 杜作勇, 王彦惠, 李东瑞, 等. 膨润土对U(Ⅵ)的吸附机理研究[J]. 核技术, 2019, 42(2): 22-29. |
[26] |
CUMBERLAND S A, WILSON S A, ETSCHMANN B, et al. Rapid immobilisation of U(VI) by eucalyptus bark: adsorption without reduction[J]. Applied Geochemistry, 2018, 96: 1-10.
DOI URL |
[27] | 葛孟团. 水合氧化铁胶体对U(Ⅵ)在饱和石英砂柱中运移的影响[D]. 兰州: 兰州大学, 2016. |
[28] | 白静, 赵勇胜, 秦传玉. 重金属在含水层迁移实验方案设计[J]. 实验室研究与探索, 2018, 37(4): 45-48. |
[29] |
DANGELMAYR M A, REIMUS P W, WASSERMAN N L, et al. Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in situ recovery site[J]. Applied Geochemistry, 2017, 80: 1-13.
DOI URL |
[30] | 张建明, 彭胜, 陈家军. 2,4-二氯苯酚在土壤中的吸附及其批实验与柱实验的分配系数比较[J]. 环境工程学报, 2012, 6(11): 4251-4256. |
[31] |
MARAQA M. Effects of fundamental differences between batch and miscible displacement techniques on sorption distribution coefficient[J]. Environmental Geology, 2001, 41(1/2): 219-228.
DOI URL |
[32] |
BARNETT M O, JARDINE P M, BROOKS S C, et al. Adsorption and transport of uranium(VI) in subsurface media[J]. Soil Science Society of America Journal, 2000, 64(3): 908-917.
DOI URL |
[33] | Zheng C M, Bennett G D. Applied Contaminant Transport Modeling[J]. EOS Transactions American Geophysical Union, 2002, 77(48): 908-923. |
[34] | 何宝南. 纳米乳化油制备及其在多孔介质中的迁移释放模拟实验[D]. 北京: 中国地质大学(北京), 2017. |
[35] |
SCHWEICH D, SARDIN M, GAUDET J P. Measurement of a cation exchange isotherm from elution curves obtained in a soil column: preliminary results[J]. Soil Science Society of America Journal, 1983, 47(1): 32-37.
DOI URL |
[36] | 张金利, 李宇. 碳纳米管-羟磷灰石对铅的吸附特性研究[J]. 环境科学, 2015, 36(7): 2554-2563. |
[37] |
NOURI L, GHODBANE I, HAMDAOUI O, et al. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran[J]. Journal of Hazardous Materials. 2007, 149(1): 115-125.
DOI URL |
[38] | GUELFO J L, WUNSCH A, MCCRAY J, et al. Subsurface transport potential of perfluoroalkyl acids (PFAAs): column experiments and modeling(Article)[J]. Journal of Contaminant Hydrology. 2020, 233: 103661. |
[39] |
AVASARALA S, LICHTNER P C, ALI A M S, et al. Reactive transport of U and V from abandoned uranium mine wastes[J]. Environmental Science and Technology, 2017, 51(21): 12385-12393.
DOI URL |
[40] | 孙占学, 马文洁, 刘亚洁, 等. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225. |
[41] | 昝金晶, 董一慧, 张卫民, 等. 铀在地下水系统中的赋存与迁移[J]. 有色金属(矿山部分), 2019, 71(6): 69-73, 77. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[3] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[4] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[5] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[6] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[7] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[8] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[9] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[10] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[11] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[12] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[13] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[14] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[15] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||