Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 432-442.DOI: 10.13745/j.esf.sf.2023.3.1
Previous Articles Next Articles
XIA Teng1(), ZHANG Jiaming2, LI Shupeng2, GUO Lili2, WANG Qi2, MAO Deqiang1,*(
)
Received:
2022-12-03
Revised:
2023-02-11
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
XIA Teng, ZHANG Jiaming, LI Shupeng, GUO Lili, WANG Qi, MAO Deqiang. Geophysical dynamic monitoring and analysis of in-situ remediation process at organic contaminated sites[J]. Earth Science Frontiers, 2024, 31(3): 432-442.
取样点号 | 深度/m | 初始(第3天) 含量/(mg·kg-1) | 原位热脱附处理后(第36天) 含量/(mg·kg-1) | 注入过硫酸盐后(第44天) 含量/(mg·kg-1) | 去除率/ % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
多环芳烃 | 石油烃 | 总含量 | 多环芳烃 | 石油烃 | 总含量 | 多环芳烃 | 石油烃 | 总含量 | |||
S1-01 | 1.5~2 | 102.87 | 1 290 | 1 392.87 | 63.91 | 295 | 358.91 | 28.16 | 203 | 231.16 | 83.4 |
S1-02 | 1.5~2 | 155.60 | 1 840 | 1 995.60 | 45.71 | 285 | 330.71 | 21.17 | 124 | 145.17 | 92.8 |
S1-03 | 0.5~1 | 83.11 | 1 110 | 1 193.11 | 35.60 | 274 | 309.60 | 7.20 | 190 | 197.20 | 83.5 |
S2-01 | 1.5~2 | 3 851 | 24 600 | 28 451 | 56.95 | 800 | 856.95 | 30.88 | 189 | 219.88 | 99.3 |
S2-02 | 0.5~1 | 51.02 | 796 | 847.02 | 25.94 | 348 | 373.94 | 7.10 | 204 | 211.10 | 75.1 |
S2-03 | 1.5~2 | 97.99 | 1 130 | 1 227.99 | 17.86 | 357 | 374.86 | 3.60 | 210 | 213.60 | 82.6 |
S3-01 | 0.5~1 | 64.51 | 717 | 781.51 | 10.98 | 297 | 307.98 | 4.50 | 206 | 210.50 | 73.1 |
S3-02 | 2~3 | 51.19 | 631 | 682.19 | 19.80 | 304 | 323.80 | 10.54 | 214 | 224.54 | 67.1 |
S3-03 | 0.5~1 | 47.90 | 991 | 1 038.90 | 22.95 | 358 | 380.95 | 1.19 | 120 | 121.19 | 88.3 |
检出限 | 48 | 4 500 | 48 | 4 500 | 48 | 4 500 |
Table 1 Soil sampling and contaminant concentration information
取样点号 | 深度/m | 初始(第3天) 含量/(mg·kg-1) | 原位热脱附处理后(第36天) 含量/(mg·kg-1) | 注入过硫酸盐后(第44天) 含量/(mg·kg-1) | 去除率/ % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
多环芳烃 | 石油烃 | 总含量 | 多环芳烃 | 石油烃 | 总含量 | 多环芳烃 | 石油烃 | 总含量 | |||
S1-01 | 1.5~2 | 102.87 | 1 290 | 1 392.87 | 63.91 | 295 | 358.91 | 28.16 | 203 | 231.16 | 83.4 |
S1-02 | 1.5~2 | 155.60 | 1 840 | 1 995.60 | 45.71 | 285 | 330.71 | 21.17 | 124 | 145.17 | 92.8 |
S1-03 | 0.5~1 | 83.11 | 1 110 | 1 193.11 | 35.60 | 274 | 309.60 | 7.20 | 190 | 197.20 | 83.5 |
S2-01 | 1.5~2 | 3 851 | 24 600 | 28 451 | 56.95 | 800 | 856.95 | 30.88 | 189 | 219.88 | 99.3 |
S2-02 | 0.5~1 | 51.02 | 796 | 847.02 | 25.94 | 348 | 373.94 | 7.10 | 204 | 211.10 | 75.1 |
S2-03 | 1.5~2 | 97.99 | 1 130 | 1 227.99 | 17.86 | 357 | 374.86 | 3.60 | 210 | 213.60 | 82.6 |
S3-01 | 0.5~1 | 64.51 | 717 | 781.51 | 10.98 | 297 | 307.98 | 4.50 | 206 | 210.50 | 73.1 |
S3-02 | 2~3 | 51.19 | 631 | 682.19 | 19.80 | 304 | 323.80 | 10.54 | 214 | 224.54 | 67.1 |
S3-03 | 0.5~1 | 47.90 | 991 | 1 038.90 | 22.95 | 358 | 380.95 | 1.19 | 120 | 121.19 | 88.3 |
检出限 | 48 | 4 500 | 48 | 4 500 | 48 | 4 500 |
时间 | 污染物含量影响系数k/% | ||
---|---|---|---|
1 m处 | 2 m处 | 3 m处 | |
第3天(开始加热) | -3.99 | -5.66 | -1.08 |
第4天 | -3.62 | -5.89 | -1.01 |
第5天 | -4.52 | -7.22 | -2.06 |
第24天 | -11.86 | -15.47 | -5.24 |
第26天 | -13.77 | -15.98 | -8.91 |
第27天 | -14.57 | -16.48 | -9.14 |
第28天 | -17.99 | -17.80 | -9.06 |
第29天 | -18.06 | -18.65 | -8.66 |
第30天 | -16.34 | -19.44 | -11.33 |
第31天 | -18.87 | -19.41 | -10.22 |
第32天 | -19.38 | -20.82 | -12.27 |
第35天 | -18.82 | -19.19 | -13.27 |
第36天(停止加热) | -19.70 | -20.70 | -13.97 |
Table 2 Influence coefficient (k) of contaminant concentration on resistivity during heating stage
时间 | 污染物含量影响系数k/% | ||
---|---|---|---|
1 m处 | 2 m处 | 3 m处 | |
第3天(开始加热) | -3.99 | -5.66 | -1.08 |
第4天 | -3.62 | -5.89 | -1.01 |
第5天 | -4.52 | -7.22 | -2.06 |
第24天 | -11.86 | -15.47 | -5.24 |
第26天 | -13.77 | -15.98 | -8.91 |
第27天 | -14.57 | -16.48 | -9.14 |
第28天 | -17.99 | -17.80 | -9.06 |
第29天 | -18.06 | -18.65 | -8.66 |
第30天 | -16.34 | -19.44 | -11.33 |
第31天 | -18.87 | -19.41 | -10.22 |
第32天 | -19.38 | -20.82 | -12.27 |
第35天 | -18.82 | -19.19 | -13.27 |
第36天(停止加热) | -19.70 | -20.70 | -13.97 |
Fig.7 Relationship between contaminant concentration and soil resistivity (a) Results of resistivity change under the same temperature; (b) Fitting results of contaminant concentration and corrected resistivity values.
[1] |
何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63.
DOI |
[2] |
LU Y L, SONG S, WANG R S, et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International, 2015, 77: 5-15.
DOI PMID |
[3] | 生态环境部. 2021中国生态环境状况公报[M]. 北京: 中国环境科学出版社, 2022. |
[4] | 孙兴凯, 黄海, 王海东, 等. 大型污染场地修复过程中的问题探讨与工程实践[J]. 环境工程技术学报, 2020, 10(5): 883-890. |
[5] |
朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34.
DOI |
[6] | 白利平, 罗云, 刘俐, 等. 污染场地修复技术筛选方法及应用[J]. 环境科学, 2015, 36(11): 4218-4224. |
[7] | 钟毅, 李广贺, 张旭, 等. 污染土壤石油生物降解与调控效应研究[J]. 地学前缘, 2006, 13(1): 128-133. |
[8] | 生态环境部. 建设用地土壤污染风险管控和修复监测技术导则[S]. 北京: 中国环境科学出版社, 2019. |
[9] | 刘兆平, 杨进, 罗水余. 地球物理方法对垃圾填埋场探测的有效性试验研究[J]. 地学前缘, 2010, 17(3): 250-258. |
[10] |
张振宇, 许伟伟, 邓亚平, 等. 三氯乙烯污染土壤的复电阻率特征和频谱参数研究[J]. 地学前缘, 2021, 28(5): 114-124.
DOI |
[11] | BORDING T, KUHL A K, FIANDACA G, et al. Cross-borehole geoelectrical time-lapse monitoring of in situ chemical oxidation and permeability estimation through induced polarization[J]. Near Surface Geophysics, 2020, 19: 43-58. |
[12] | TITOV K, TARASOV A, ILYIN Y, et al. Relationships between induced polarization relaxation time and hydraulic properties of sandstone[J]. Geophysical Journal International, 2010, 180(3): 1095-1106. |
[13] | 姜勇, 徐刚, 杨洁, 等. 高密度电法在原位修复土壤过程中的监控研究[J]. 环境监测管理与技术, 2020, 32(6): 18-22. |
[14] | 杨迪琨, 刘兴昌, 祝福荣, 等. 土壤污染原位热脱附修复过程的电场监测方法[C]//中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2019: 116-118. |
[15] | 万金忠, 范婷婷, 靳德成, 等. 复合有机污染场地原位热强化化学氧化还原耦合修复方: CN202210171994.8[P]. 2022-05-27. |
[16] |
张小刚, 张芳, 李书鹏, 等. 污染场地原位热修复技术与能效分析[J]. 地学前缘, 2022, 29(3): 200-206.
DOI |
[17] | 生态环境部. 污染土壤修复工程技术规范: 原位热脱附[S]. 北京: 中国环境科学出版社, 2021. |
[18] | 蒋梦迪, 张清越, 季跃飞, 等. 热活化过硫酸盐降解三氯生[J]. 环境科学, 2018, 39(4): 1661-1667. |
[19] | ARATO A, WEHRER M, BIRÓ B, et al. Integration of geophysical, geochemical and microbiological data for a comprehensive small-scale characterization of an aged LNAPL-contaminated site[J]. Environmental Science and Pollution Research, 2014, 21: 8948-8963. |
[20] | 吴昊. 大连某TPH污染场地原位强化过硫酸钠修复技术研究[D]. 沈阳: 沈阳大学, 2017. |
[21] | LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides: stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898. |
[22] | 李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005. |
[23] | 王玉玲, 能昌信, 王彦文, 等. 重金属污染场地电阻率法探测数值模拟及应用研究[J]. 环境科学, 2013, 35(5): 1908-1914. |
[24] | LOKE M H, BARKER R D. Rapid least squares inversion of apparent resistivity pseudosections by a quasi-Newton method[J]. Geophysical Prospecting, 1996, 44: 131-152. |
[25] | 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164. |
[26] | 环境保护部. 土壤和沉积物多环芳烃的测定: 高效液相色谱法[S]. 北京: 中国环境科学出版社, 2016. |
[27] | 生态环境部. 土壤和沉积物石油烃(C10-C40)的测定: 气相色谱法[S]. 北京: 中国环境科学出版社, 2019. |
[28] | ICE G G. Stream temperature and dissolved oxygen[M]. New York: Springer, 2008. |
[29] | TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. |
[30] | 生态环境部, 国际市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准[S]. 北京: 中国环境科学出版社, 2018. |
[31] | BASS B, CARDENAS M B, BEFUS K M. Seasonal shifts in soil moisture throughout a semiarid hillslope ecotone during drought: a geoelectrical view[J]. Vadose Zone Journal, 2017, 16(2): 1-17. |
[32] | KELLER G V, FRISCHKNECT F C. Electrical methods in geophysical prospecting[M]. Oxford: Pergamon Press, 1966. |
[33] | XIA T, DONG Y, MAO D, et al. Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography[J]. Hydrogeology Journal, 2021, 29(3): 1189-1201. |
[34] |
HARTE P T, SMITH T E, WILLIAMS J H, et al. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA[J]. Journal of Contaminant Hydrology, 2012, 132: 58-74.
DOI PMID |
[1] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[2] | ZHANG Dingding, ZHANG Heng. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints [J]. Earth Science Frontiers, 2022, 29(1): 303-315. |
[3] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
[4] | Evgeny Kh. TURUTANOV, Evgeny V. SKLYAROV, Valentina V. MORDVINOVA, Anatoly M. MAZUKABZOV, Viktor S. KANAYKIN. Geological-geophysical models of the Earth’s crust along the Russian-Mongolian geotransects [J]. Earth Science Frontiers, 2021, 28(5): 260-282. |
[5] | ZHANG Genyuan, LIU Demin, ZHANG Jingqi, WEN Chen, KANG Zhiqiang, GUAN Junpeng. Analysis of structural controls of geothermal resources in the NW-SE trending Boluo-Dayawan fault depression in Huizhou City, Guangdong Province [J]. Earth Science Frontiers, 2020, 27(1): 63-71. |
[6] | LIANG Feng,GAO Lei,WANG Zhihui,LI Hailong,LIU Kai,WANG Tao,LI Xiaozhao. Study of the shear wave velocity structure of underground shallow layer of Jinan by ambient noise tomography [J]. Earth Science Frontiers, 2019, 26(3): 129-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||