Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 63-71.DOI: 10.13745/j.esf.2020.1.8
Previous Articles Next Articles
ZHANG Genyuan1(), LIU Demin1,*(
), ZHANG Jingqi2, WEN Chen1, KANG Zhiqiang3, GUAN Junpeng4
Received:
2019-06-02
Revised:
2019-10-30
Online:
2020-01-20
Published:
2020-01-20
Contact:
LIU Demin
CLC Number:
ZHANG Genyuan, LIU Demin, ZHANG Jingqi, WEN Chen, KANG Zhiqiang, GUAN Junpeng. Analysis of structural controls of geothermal resources in the NW-SE trending Boluo-Dayawan fault depression in Huizhou City, Guangdong Province[J]. Earth Science Frontiers, 2020, 27(1): 63-71.
采样地点 | 岩性 | 年代/Ma | wB/10-6 | w(K)/% | 生热率A/(μW·m-3) | |
---|---|---|---|---|---|---|
U | Th | |||||
博罗县 | 细粒黑云母花岗岩 | 120 | 3.741 | 10.99 | 4.53 | 2.115 049 |
博罗县 | 中粒黑云母花岗岩 | 155 | 5.89 | 36.39 | 5.17 | 4.448 126 |
惠东县 | 中粒黑云母花岗岩 | 144 | 11.55 | 19.92 | 4.94 | 4.738 588 |
惠东县 | 中粒似斑状黑云母花岗岩 | 151 | 4.390 | 16.63 | 5.02 | 2.708 816 |
河源县 | 中粗粒黑云母二长花岗岩 | 164 | 4.281 | 24.18 | 5.49 | 3.238 846 |
Table 1 Heat generation rates of thermogenic elements in granite in Huizhou City and surrounding areas
采样地点 | 岩性 | 年代/Ma | wB/10-6 | w(K)/% | 生热率A/(μW·m-3) | |
---|---|---|---|---|---|---|
U | Th | |||||
博罗县 | 细粒黑云母花岗岩 | 120 | 3.741 | 10.99 | 4.53 | 2.115 049 |
博罗县 | 中粒黑云母花岗岩 | 155 | 5.89 | 36.39 | 5.17 | 4.448 126 |
惠东县 | 中粒黑云母花岗岩 | 144 | 11.55 | 19.92 | 4.94 | 4.738 588 |
惠东县 | 中粒似斑状黑云母花岗岩 | 151 | 4.390 | 16.63 | 5.02 | 2.708 816 |
河源县 | 中粗粒黑云母二长花岗岩 | 164 | 4.281 | 24.18 | 5.49 | 3.238 846 |
[1] |
DIPIPPO R. Geothermal power plants: evolution and performance assessments[J]. Geothermics, 2015, 53:291-307.
DOI URL |
[2] |
SMITH M C. A history of hot dry rock geothermal energy systems[J]. Journal of Volcanology and Geothermal Research, 1983, 15(1):1-20.
DOI URL |
[3] | BROWN D W, DUCHANE D V, HEIKEN G, et al. The Enormous Potential for Hot Dry Rock Geothermal Energy[M]. Berlin, Heidelberg: Springer, 2012: 17-40. |
[4] | 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19):13-21. |
[5] | 杨吉龙, 胡克. 干热岩(HDR)资源研究与开发技术综述[J]. 世界地质, 2001, 20(1):43-51. |
[6] | Massachusetts Institute of Technology. The future of geothermal energy: impact of Enhanced Geo-thermal Systems (EGS) on the United States in the 21st century[M]. Boston: Massachusetts Institute of Technology, 2006: 372. |
[7] |
BERTANI R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60:31-43.
DOI URL |
[8] | 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学:中国地质大学学报, 2015, 40(11):1858-1869. |
[9] | 李德威. 地球系统动力学与取热减灾减排[J]. 地学前缘, 2014, 21(6):243-253. |
[10] |
RYBACH L, BODMER P, PAVONI N, et al. Siting criteria for heat extraction from hot dry rock: application to Switzerland[J]. Pure and Applied Geophysics, 1978, 116(6):1211-1224.
DOI URL |
[11] |
ABUBAKAR A J A, HASHIM M, POUR A B. Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria[J]. Geocarto International, 2019, 34(6):597-625.
DOI URL |
[12] |
CLOETINGH S, WEES JD V, ZIEGLER P A, et al. Lithosphere tectonics and thermomechanical properties: an integrated modelling approach for Enhanced Geothermal Systems exploration in Europe[J]. Earth-Science Reviews, 2010, 102(3/4):159-206.
DOI URL |
[13] |
WANG K, LI Z X, DONG S, et al. Early crustal evolution of the Yangtze Craton, South China: new constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9-2.6 Ga granitic rocks in the Zhongxiang Complex[J]. Precambrian Research, 2018, 314:325-352.
DOI URL |
[14] |
YIN A. Cenozoic tectonic evolution of Asia: a preliminary synjournal[J]. Tectonophysics, 2010, 488(1/2/3/4):293-325.
DOI URL |
[15] | 邓晋福, 冯艳芳, 狄永军, 等. 华南地区侵入岩时空演化框架[J]. 地质论评, 2016, 62(1):3-16. |
[16] | 王德滋, 沈渭洲. 中国东南部花岗岩成因与地壳演化[J]. 地学前缘, 2003, 10(3):209-220. |
[17] |
ARTEMIEVA I M, THYBO H, JAKOBESEN K, et al. Heat production in granitic rocks: global analysis based on a new data compilation GRANITE2017[J]. Earth-Science Reviews, 2017, 172:1-26.
DOI URL |
[18] |
KHUTORSKOI M D, POLYAK B G. Role of radiogenic heat generation in surface heat flow formation[J]. Geotectonics, 2016, 50(2):179-195.
DOI URL |
[19] | 张旗, 金惟俊, 李承东, 等 . 岩浆热场: 它的基本特征及其与地热场的区别[J]. 岩石学报, 2014, 30(2):341-349. |
[20] | 余心起, 吴淦国, 张达, 等. 中国东南部中生代构造体制转换作用研究进展[J]. 自然科学进展, 2005, 15(10):1167-1174. |
[21] | 环文林, 时振梁, 鄢家全. 中国东部及邻区中新生代构造演化与太平洋板块运动[J]. 地质科学, 1982, 17(2):179-190. |
[22] | 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(增刊2):876-884. |
[23] | 蔺文静, 刘志明, 王婉丽. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1):312-321. |
[24] |
JIANG G, LI W, SONG R, et al. Heat flow, depth-temperature, and assessment of the enhanced geothermal system (EGS) resource base of continental China[J]. Environmental Earth Sciences, 2016, 75(22):1432.
DOI URL |
[25] | 汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地震地质, 1990, 12(4):351-366. |
[26] | 袁玉松, 马永生, 胡圣标, 等. 中国南方现今地热特征[J]. 地球物理学报, 2006, 49(4):1118-1126. |
[27] | 吴福元, 葛文春, 孙德有, 等. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 2003, 10(3):51-60. |
[28] |
HUANG S P. Geothermal energy in China[J]. Nature Climate Change, 2012, 2(8):557-560
DOI URL |
[29] |
HASTEROK D, CHAPMAN D S. Heat production and geotherms for the continental lithosphere[J]. Earth Planetary Science Letters, 2011, 307(1/2):59-70.
DOI URL |
[30] | 凌洪飞, 沈渭洲, 孙涛, 等. 广东省22个燕山期花岗岩的源区特征及成因: 元素及Nd-Sr同位素研究[J]. 岩石学报, 2006, 22(11):2687-2703. |
[31] |
RYBACH L. Radioactive heat production in rocks and itsrelation to other petrophysical parameters[J]. Pure Applied Geophysics, 1976, 114(2):309-317.
DOI URL |
[32] |
XI Y, WANG G, SHUANG L, et al. The formation of a geothermal anomaly and extensional structures in Guangdong, China: evidence from gravity analyses[J]. Geothermics, 2018, 72:225-231.
DOI URL |
[33] | 邓阳凡, 李守林, 范蔚茗, 等. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报, 2011, 54(10):2560-2574. |
[34] | 唐晓音, 黄少鹏, 张功成, 等. 南海北部陆缘珠江口盆地岩石圈热结构[J]. 地球物理学报, 2018, 61(9):3749-3759. |
[35] | 王敏玲, 陈赟, 梁晓峰, 等. 华南及南海北部地区瑞利面波层析成像[J]. 地球物理学报, 2015, 58(6):1963-1975. |
[36] | 鄢全树, 石学法. 海南地幔柱与南海形成演化[J]. 高校地质学报, 2007, 13(2):311-322. |
[37] | 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6):55-78. |
[38] |
MARUYAMA S. Plume tectonics[J]. Journal of Geological Society of Japan, 1994, 100(1):24-49.
DOI URL |
[1] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[2] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[3] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[4] | XIA Teng, ZHANG Jiaming, LI Shupeng, GUO Lili, WANG Qi, MAO Deqiang. Geophysical dynamic monitoring and analysis of in-situ remediation process at organic contaminated sites [J]. Earth Science Frontiers, 2024, 31(3): 432-442. |
[5] | ZHANG Jinjiang, ZHENG Jianlei, WANG Haibin, GUO Lei, LIU Jiang, QI Guowei. Late Mesozoic-Early Cenozoic tectonic events in Daqingshan and Panyangshan, Inner Mongolia, and its implication for the tectonic evolution of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2024, 31(1): 127-141. |
[6] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
[7] | ZHOU Qijie, LIU Yongjiang, WANG Deying, GUAN Qingbin, WANG Guangzeng, WANG Yu, LI Zunting, LI Sanzhong. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160. |
[8] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[9] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[10] | ZHANG Dingding, ZHANG Heng. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints [J]. Earth Science Frontiers, 2022, 29(1): 303-315. |
[11] | Evgeny Kh. TURUTANOV, Evgeny V. SKLYAROV, Valentina V. MORDVINOVA, Anatoly M. MAZUKABZOV, Viktor S. KANAYKIN. Geological-geophysical models of the Earth’s crust along the Russian-Mongolian geotransects [J]. Earth Science Frontiers, 2021, 28(5): 260-282. |
[12] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
[13] | GUO Jinjing, ZHAO Haitao, LIU Chongqing, WU Yanwang. When the northeastern margin of the Qinghai-Tibet Plateau was involved in its present tectonic system: Constraints from the Cenozoic sedimentary sequence [J]. Earth Science Frontiers, 2021, 28(5): 337-361. |
[14] | WAN Xiaoqiao. Dynamic response of Mesozoic-Cenozoic foraminiferal paleogeography to the Tibetan Tethys evolution [J]. Earth Science Frontiers, 2020, 27(6): 116-127. |
[15] | LI Wenchang, JIANG Xiaojun. The Cenozoic tectono-magmatism-mineralization effect of the intracontinental tectonic transformation system in the western margin of Yangtze Block [J]. Earth Science Frontiers, 2020, 27(2): 151-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||