Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 337-361.DOI: 10.13745/j.esf.sf.2020.12.13
Previous Articles Next Articles
GUO Jinjing(), ZHAO Haitao, LIU Chongqing, WU Yanwang
Received:
2020-07-23
Revised:
2020-11-03
Online:
2021-09-25
Published:
2021-10-30
CLC Number:
GUO Jinjing, ZHAO Haitao, LIU Chongqing, WU Yanwang. When the northeastern margin of the Qinghai-Tibet Plateau was involved in its present tectonic system: Constraints from the Cenozoic sedimentary sequence[J]. Earth Science Frontiers, 2021, 28(5): 337-361.
[1] |
MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201):419-426.
DOI URL |
[2] |
MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4):357.
DOI URL |
[3] | DEWEY J F, SHACKLETON R M, CHANG C, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London Series A, 1988, 327:379-413. |
[4] |
HARRISON T M, COPELAND P, KIDD W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052):1663-1670.
DOI URL |
[5] |
XIAO X C, LI T N. Tectonic evolution and uplift of the Qinghai-Tibet Plateau[J]. Episodes, 1995, 18(1/2):31-35.
DOI URL |
[6] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.
DOI URL |
[7] |
TAPPONNIER P. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677.
DOI URL |
[8] |
ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D . The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058.
DOI URL |
[9] |
WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621:1-43.
DOI URL |
[10] |
LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review[J]. Earth-Science Reviews, 2015, 143:36-61.
DOI URL |
[11] | 许志琴, 杨经绥, 李海兵, 等. 造山的高原: 青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京: 地质出版社, 2007. |
[12] | 王成善, 戴紧根, 刘志飞, 等. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展[J]. 地学前缘, 2009, 16(3):1-30. |
[13] | 吴珍汉, 吴中海, 胡道功. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社, 2009. |
[14] | 肖序常. 青藏高原的碰撞造山作用及效应[M]. 北京: 地质出版社, 2010. |
[15] | 潘桂棠, 王立全, 张万平, 等. 青藏高原及邻区大地构造图及说明书[M]. 北京: 地质出版社, 2013: 1-208. |
[16] | 张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3):574-585. |
[17] |
AITCHISON J C, DAVIS A M. When did the India-Asia collision really happen?[J]. Gondwana Research, 2001, 4(4):560-561.
DOI URL |
[18] | AITCHISON J C, ALI J R, DAVIS A M. When and where did India and Asia collide?[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5):B05423. |
[19] |
YUAN D Y, GE W P, CHEN Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 2013, 32(5):1358-1370.
DOI URL |
[20] | 袁道阳, 张培震, 方小敏, 等. 青藏高原东北缘临夏盆地晚新生代构造变形及过程[J]. 地学前缘, 2007, 14(1):243-250. |
[21] | 刘少峰, 张国伟, HELLER P L. 循化—贵德地区新生代盆地发育及其对高原增生的指示[J]. 中国科学: D辑, 2007, 37(增刊1):235-248. |
[22] | 方小敏, 宋春晖, 戴霜, 等. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录[J]. 地学前缘, 2007, 14(1):230-242. |
[23] |
FANG X M, GARZIONE C, VAN DER VOO R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4):545-560.
DOI URL |
[24] |
FANG X M, YAN M D, VAN DER VOO R , et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 2005, 117(9):1208.
DOI URL |
[25] | HORTON B K, DUPONT-NIVET G, ZHOU J, et al. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B4):B04402. |
[26] |
GARZIONE C N, IKARI M J, BASU A R. Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: implications for tectonic forcing of climate[J]. Geological Society of America Bulletin, 2005, 117(9):1156.
DOI URL |
[27] |
CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2):78-88.
DOI URL |
[28] |
WANG X X, LI J J, SONG C H, et al. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui basin, northeastern margin of Tibetan Plateau[J]. International Journal of Earth Sciences, 2012, 101(5):1345-1356.
DOI URL |
[29] |
WANG X X, ZATTIN M, LI J J, et al. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by Apatite fission track thermochronology: implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 2011, 42(1/2):97-110.
DOI URL |
[30] |
HOUGH B G, GARZIONE C N, WANG Z, et al. Stable isotope evidence for topographic growth and basin segmentation: implications for the evolution of the NE Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(1/2):168-185.
DOI URL |
[31] |
LEASE R O, BURBANK D W, HOUGH B, et al. Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua basin magnetostratigraphy and provenance[J]. Geological Society of America Bulletin, 2012, 124(5/6):657-677.
DOI URL |
[32] |
WANG W T, ZHANG P Z, KIRBY E, et al. A revised chronology for Tertiary sedimentation in the Sikouzi basin: implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau[J]. Tectonophysics, 2011, 505(1/2/3/4):100-114.
DOI URL |
[33] |
WANG W T, KIRBY E, ZHANG P Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125(3/4):377-400.
DOI URL |
[34] |
WANG Z C, ZHANG P Z, GARZIONE C N, et al. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan Plateau, China: implications for middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44:189-202.
DOI URL |
[35] | 李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学: D辑, 1996, 26(4):316-322. |
[36] | 李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15):1569-1574. |
[37] | 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5):381-391. |
[38] | 施雅风, 李吉均, 李炳元, 等. 青藏高原晚新生代隆升与环境变化[M]. 广州: 广东科技出版社, 1998. |
[39] | 郑度, 姚檀栋. 青藏高原隆升与环境效应[M]. 北京: 科学出版社, 2004. |
[40] | 鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题[J]. 中国科学: 地球科学, 2013, 43(12):1907-1918. |
[41] | 刘晓东, DONG B W. 青藏高原隆升对亚洲季风-干旱环境演化的影响[J]. 科学通报, 2013, 58(28/29):2906-2919. |
[42] |
AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
DOI URL |
[43] |
GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163.
DOI URL |
[44] |
DUPONT-NIVET G, HOORN C, KONERT M. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining basin[J]. Geology, 2008, 36(12):987.
DOI URL |
[45] |
QIANG X K, AN Z S, SONG Y G, et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago[J]. Science China: Earth Sciences, 2011, 54(1):136-144.
DOI URL |
[46] | 方小敏. 山前挠曲盆地沉积相变化对地层对比和气候变化记录的关键控制: 模型与应用: 以临夏盆地为例[J]. 第四纪研究, 2018, 38(1):1-14. |
[47] |
LIU S F, ZHANG G W, PAN F, et al. Timing of Xunhua and Guide basin development and growth of the northeastern Tibetan Plateau, China[J]. Basin Research, 2013, 25(1):74-96.
DOI URL |
[48] | 张克信, 王国灿, 曹凯, 等. 青藏高原新生代主要隆升事件: 沉积响应与热年代学记录[J]. 中国科学: D辑, 2008, 38(12):1575-1588. |
[49] | 张克信, 王国灿, 季军良, 等. 青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J]. 中国科学: 地球科学, 2010, 40(12):1632-1654. |
[50] | 杨利荣, 李建星, 岳乐平, 等. 祁连山及邻区古—新近纪地层分区与构造-沉积演化[J]. 中国科学: 地球科学, 2017, 47(5):586-600. |
[51] | 郭进京, 韩文峰, 胡晓隆, 等. 西秦岭北缘漳县新生代伸展断陷盆地确定及其地质意义[J]. 地学前缘, 2017, 24(5):230-244. |
[52] | 董云鹏, 杨钊, 张国伟, 等. 西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J]. 地质学报, 2008, 82(9):1186-1194. |
[53] | 裴先治, 丁仨平, 李佐臣, 等. 西秦岭北缘早古生代天水—武山构造带及其构造演化[J]. 地质学报, 2009, 83(11):1547-1564. |
[54] | 许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(6):1697-1709. |
[55] | 张国伟. 秦岭勉略构造带与中国大陆构造[M]. 北京: 科学出版社, 2015: 1-501. |
[56] | 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855. |
[57] |
DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1):1-40.
DOI URL |
[58] |
DONG Y P, ZHANG G W, NEUBAUER F, et al. Tectonic evolution of the Qinling orogen, China: review and synjournal[J]. Journal of Asian Earth Sciences, 2011, 41(3):213-237.
DOI URL |
[59] | 郭进京, 韩文峰, 赵海涛, 等. 西秦岭中—新生代红层的构造层划分及其构造意义[J]. 地质论评, 2014, 60(6):1231-1244. |
[60] | 郭进京, 韩文峰, 赵海涛, 等. 西秦岭晚白垩世原型盆地: 新生代青藏高原隆起的背景[J]. 地质科学, 2015, 50(2):364-376. |
[61] | 惠浪波, 郭进京, 韩文峰, 等. 西秦岭北缘武山地区上白垩统沙漠相沉积特征[J]. 沉积学报, 2017, 35(4):649-663. |
[62] | 甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989. |
[63] | 张二朋. 秦岭—大巴山及临区地质图(1∶1 000 000)[CM]. 北京: 地质出版社, 1992. |
[64] | 《中国地质图集》编委会. 中国地质图集[CM]. 北京: 地质出版社, 2002. |
[65] | 中国地质调查局. 中华人民共和国地质图(1∶2 500 000)说明书[M]. 北京: 地质出版社, 2004. |
[66] | 郭进京, 韩文峰, 赵海涛, 等. 西秦岭北缘漳县中—新生代红层地层格架厘定及其地质意义[J]. 西北地质, 2016, 49(1):82-91. |
[67] | 郭进京, 杜志锐, 赵海涛, 等. 西秦岭北缘北西向断层特征和形成的构造机制及地质意义[J]. 地质科学, 2019, 54(2):373-385. |
[68] | 陈发景, 汪新文, 陈昭年, 等. 伸展断陷盆地分析[M]. 北京: 地质出版社, 2004. |
[69] | 陈发景, 汪新文, 陈昭年. 前陆盆地分析[M]. 北京: 地质出版社, 2007. |
[70] | 漆家福, 杨桥. 陆内裂陷盆地构造动力学分析[J]. 地学前缘, 2012, 19(5):19-26. |
[71] | FRIEDMAN G M, SANDERS J E. Principles of sedimentology[M]. New York: John Wiley & Sons, 1978. |
[72] | 郭进京, 韩文峰, 王志强, 等. 西秦岭北缘断裂带漳县—车厂断层的结构及构造演化[J]. 地球学报, 2013, 34(2):154-162. |
[73] | 王海燕, 高锐, 李秋生, 等. 青藏高原松潘—西秦岭—临夏盆地深地震反射剖面: 采集、处理与初步解释[J]. 地球物理学报, 2014, 57(5):1451-1461. |
[74] | 高锐, 王海燕, 王成善, 等. 青藏高原东北缘岩石圈缩短变形: 深地震反射剖面再处理提供的证据[J]. 地球学报, 2011, 32(5):513-520. |
[75] |
WANG H Y, GAO R, ZENG L S, et al. Crustal structure and Moho geometry of the northeastern Tibetan Plateau as revealed by SinoProbe-02 deep seismic-reflection profiling[J]. Tectonophysics, 2014, 636:32-39.
DOI URL |
[76] | 金胜, 张乐天, 金永吉, 等. 青藏高原东北缘合作—大井剖面地壳电性结构研究[J]. 地球物理学报, 2012, 55(12):3979-3990. |
[77] | 赵凌强, 詹艳, 陈小斌, 等. 西秦岭造山带(中段)及其两侧地块深部电性结构特征[J]. 地球物理学报, 2015, 58(7):2460-2472. |
[78] | 喻学惠, 赵志丹, 莫宣学, 等. 甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义[J]. 科学通报, 2005, 50(23):2638-2643. |
[79] | 喻学惠, 莫宣学, 赵志丹, 等. 甘肃西秦岭两类新生代钾质火山岩: 岩石地球化学与成因[J]. 地学前缘, 2009, 16(2):79-89. |
[80] | 喻学惠, 莫宣学, 赵志丹, 等. 西秦岭新生代双峰式火山作用及南北构造带成因初探[J]. 岩石学报, 2011, 27(7):2195-2202. |
[81] | 裴先治, 丁仨平, 胡波, 等. 西秦岭天水地区新生代酸性火山岩地球化学特征及其构造意义[J]. 岩石矿物学杂志, 2004, 23(3):227-235. |
[82] |
HARRISON T M, COPELAND P, KIDD W S F , et al. Activation of the Nyainqentanghla Shear Zone: implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3):658-676.
DOI URL |
[83] |
COLEMAN M, HODGES K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517):49-52.
DOI URL |
[84] |
BLISNIUK P M, HACKER B R, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6847):628-632.
DOI URL |
[85] |
SPICER R A, HARRIS N B W, WIDDOWSON M , et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421(6923):622-624.
DOI URL |
[86] | 葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应[J]. 地学前缘, 2006, 13(6):118-130. |
[87] | 方小敏, 徐先海, 宋春晖, 等. 临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因[J]. 第四纪研究, 2007, 27(6):989-1000. |
[88] | 郑德文, 张培震, 万景林, 等. 构造、气候与砾岩: 以积石山和临夏盆地为例[J]. 第四纪研究, 2006, 26(1):63-69. |
[89] | 张培震, 郑德文, 尹功明, 等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 2006, 26(1):5-13. |
[90] | ZHENG D W, ZHANG P Z, WAN J L, et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet: detrital AFT records from Linxia Basin[J]. Science in China Series D: Earth Sciences, 2003, 46(2):266-275. |
[91] |
ZHENG D W, ZHANG P Z, WAN J L, et al. Rapid exhumation at 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1/2):198-208.
DOI URL |
[92] | 潘保田, 高红山, 李炳元, 等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究, 2004, 24(1):50-57, 133. |
[1] | ZHOU Qijie, LIU Yongjiang, WANG Deying, GUAN Qingbin, WANG Guangzeng, WANG Yu, LI Zunting, LI Sanzhong. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160. |
[2] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[3] | WAN Xiaoqiao. Dynamic response of Mesozoic-Cenozoic foraminiferal paleogeography to the Tibetan Tethys evolution [J]. Earth Science Frontiers, 2020, 27(6): 116-127. |
[4] | LI Wenchang, JIANG Xiaojun. The Cenozoic tectono-magmatism-mineralization effect of the intracontinental tectonic transformation system in the western margin of Yangtze Block [J]. Earth Science Frontiers, 2020, 27(2): 151-164. |
[5] | ZHANG Genyuan, LIU Demin, ZHANG Jingqi, WEN Chen, KANG Zhiqiang, GUAN Junpeng. Analysis of structural controls of geothermal resources in the NW-SE trending Boluo-Dayawan fault depression in Huizhou City, Guangdong Province [J]. Earth Science Frontiers, 2020, 27(1): 63-71. |
[6] | LIU Demin, YANG Weiran, GUO Tieying. Discussion on Cenozoic tectonic development and dynamics in South Tibet [J]. Earth Science Frontiers, 2020, 27(1): 194-203. |
[7] |
LIU Demin, YANG Weiran, GUO Tieying, RU Jiangtao, XIONG Aimin .
Discussion on the Cenozoic tectonic evolution and dynamics of southern Tibet
[J]. Earth Science Frontiers, 2020, 27(1): 275-286.
|
[8] | YUAN Fanglin,ZHANG Qi2,ZHANG Chengli. Characteristics of the temporal-spatial distribution of global Cenozoic picrite and their significance [J]. Earth Science Frontiers, 2019, 26(4): 13-21. |
[9] | WAN Tianfeng. On the dynamic mechanics of global lithosphere plate tectonics. [J]. Earth Science Frontiers, 2018, 25(2): 320-335. |
[10] | LI Shubo,WANG Yuejun,WU Shimin. MesoCenozoic tectonothermal pattern of the Pearl River Mouth Basin: constraints from zircon and apatite fission track data [J]. Earth Science Frontiers, 2018, 25(1): 95-107. |
[11] | YANG Meng-Hui, ZHANG Hou-He, LIAO Zong-Bao, LUO Xiao-Hua, YANG Guang, GONG Ting. Petroleum systems of the major sedimentary basins in Nansha sea waters (South China Sea). [J]. Earth Science Frontiers, 2015, 22(3): 48-58. |
[12] | HUANG Lei. The control of hydrocarbon accumulation by strikeslip motion within the Bohai Sea Rise: A case study from Shaleitian Uplift. [J]. Earth Science Frontiers, 2015, 22(3): 68-76. |
[13] | ZHANG Xin-Zhou, GUO Ye, CENG Zhen, FU Qiu-Lin, BO Jian-Ban. Dynamic evolution of the MesozoicCenozoic basins in the northeastern China. [J]. Earth Science Frontiers, 2015, 22(3): 88-98. |
[14] | JIAO Yang-Quan, WU Li-Qun, PANG Yun-Biao, RONG Hui, JI Dong-Min, MIAO Ai-Sheng, LI Hong-Liang. Sedimentarytectonic setting of the depositiontype uranium deposits forming in the PaleoAsian tectonic domain, North China. [J]. Earth Science Frontiers, 2015, 22(1): 189-205. |
[15] | ZHAO Qi-Chao, XIA Qun-Ke, LIU Shao-Chen, CHEN Huan, FENG Min. Water content and element geochemistry of peridotite xenoliths hosted by Cenozoic basalt in Longgang and Wangqing, Jilin Province [J]. Earth Science Frontiers, 2015, 22(1): 360-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||