Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 230-259.DOI: 10.13745/j.esf.sf.2021.9.38
• A spacial section on The India-Eurasia Collision and Its Long-Range Effec • Previous Articles Next Articles
ZHAO Junmeng1,2,*(), ZHANG Peizhen3, ZHANG Xiankang4, Xiaohui YUAN5, Rainer KIND5, Robert van der HILST6, GAN Weijun7, SUN Jimin8, DENG Tao9, LIU Hongbing1, PEI Shunping1,2, XU Qiang1, ZHANG Heng1, JIA Shixu4, YAN Maodu1,2, GUO Xiaoyu3, LU Zhanwu10, YANG Xiaoping7, DENG Gong1, JU Changhui1
Received:
2021-09-05
Revised:
2021-09-20
Online:
2021-09-25
Published:
2021-10-29
Contact:
ZHAO Junmeng
CLC Number:
ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project[J]. Earth Science Frontiers, 2021, 28(5): 230-259.
Fig.2 Comparison of research results by Kind et al. (2002) vs. Kumar et al. (2006) (adapted from [8-9]). (a) Kind et al. (2002) suggest a N-W subduction of the Asian lithospheric mantle beneath the Tibetan Plateau, finding no S-N subduction of the Indian lithospheric mantle. (b) Kumar et al. (2006) show a S-N subduction of the Indian lithosphere beneath the Tibetan Plateau.
名称 | 探测手段 | 长度/ km | 观测 点数 |
---|---|---|---|
额敏—奇台剖面 | 人工地震宽角反射/折射探测 重磁联合反演 | 800 800 | 230 |
I-I剖面 | 地震转换波法 重磁联合反演 | 400 400 | 400 |
II-II剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
III-III剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
IV-IV剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
沙雅—布尔津剖面 | 人工地震宽角反射/折射 大地电磁探测 重力探测 | 1000 | 340 600 |
库尔勒—吉木萨尔 | 人工地震宽角反射/折射 重磁联合反演 | 900 | 300 |
拜城—大柴旦剖面 | 人工地震宽角反射/折射 重磁联合反演 | 1400 | 400 |
格尔木—花海子 | 人工地震宽角反射/折射 重磁联合反演 | 400 | 120 |
ANTILOPE-I | 宽频带地震台阵 | 800 | 63 |
ANTILOPE-II | 宽频带地震台阵 | 800 | 82 |
ANTILOPE-III | 宽频带地震台阵 | 800 | 80 |
ANTILOPE-IV | 宽频带地震台阵 | 800 | 80 |
ANTILOPE-V | 宽频带地震台阵 宽频带大地电磁 | 台阵 500 | 90 17 |
ANTILOPE-VI | 宽频带地震台阵 大地电磁 | 台阵 500 | 80 100 |
Table 1 Descriptions of all profiles determined by the ANTILOPE Project
名称 | 探测手段 | 长度/ km | 观测 点数 |
---|---|---|---|
额敏—奇台剖面 | 人工地震宽角反射/折射探测 重磁联合反演 | 800 800 | 230 |
I-I剖面 | 地震转换波法 重磁联合反演 | 400 400 | 400 |
II-II剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
III-III剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
IV-IV剖面 | 地震转换波法 重磁联合反演 | 400 | 400 |
沙雅—布尔津剖面 | 人工地震宽角反射/折射 大地电磁探测 重力探测 | 1000 | 340 600 |
库尔勒—吉木萨尔 | 人工地震宽角反射/折射 重磁联合反演 | 900 | 300 |
拜城—大柴旦剖面 | 人工地震宽角反射/折射 重磁联合反演 | 1400 | 400 |
格尔木—花海子 | 人工地震宽角反射/折射 重磁联合反演 | 400 | 120 |
ANTILOPE-I | 宽频带地震台阵 | 800 | 63 |
ANTILOPE-II | 宽频带地震台阵 | 800 | 82 |
ANTILOPE-III | 宽频带地震台阵 | 800 | 80 |
ANTILOPE-IV | 宽频带地震台阵 | 800 | 80 |
ANTILOPE-V | 宽频带地震台阵 宽频带大地电磁 | 台阵 500 | 90 17 |
ANTILOPE-VI | 宽频带地震台阵 大地电磁 | 台阵 500 | 80 100 |
Fig.5 Characteristics of crust-mantle structure and radial anisotropy parameters revealed by the seismographic imaging of the A-A’ profile in the eastern Pamir Plateau. The top left panel shows the location of the A-A’ profile and the velocity perturbations at 200 km depth.
Fig.6 (a) Simplified geological map of the study area and (b-d) common conversion point images of receiver functions along cross-sections A-A’, B-B’ and C-C’(adapted from [18]). The black circles are the projected intermediate-depth earthquakes perpendicular to the profile within 50 km. The green lines in Fig.6a highlight the anomalous locations of the Moho depth.
Fig.8 S receiver function (S-RF) along ANTILOPE-I profile (adapted after [21]). Red (blue) color represents the positive (negative) amplitudes, indicating the velocity jump increases (decreases) with depth; The Moho and LAB phases are marked by dashed lines. The elevation is plotted at the top panel, together with the position of the major sutures and faults. MBT, Main Boundary Thrust; MCT, Main Central Thrust; YZS, Yarlong-Zangbo Suture, BNS, Bangong-Nujiang Suture; JRS, Jinsha-River Suture; ATF, Altyn-Tagh Fault.
Fig.9 P receiver function (P-RF) CCP image along ANTILOPE-I profile (adapted after [21]). Topographic feature is shown in the top panel. Blue and green bars below the top panel mark the positions of the Indian and Asian Plates, respectively, as determined by the S receiver functions.
Fig.12 P-RF CCP image along ANTILOPE-II profile (adapted after [21]). Topography is depicted in the top panel. Blue and red bars below the top panel mark the positions of the Indian and Tibetan Plates, respectively, as determined by the S receiver functions.
Fig.13 P-RF CCP image along INDEPTH profile (adapted after [8-9,21]). Blue, red and green bars below the topographic panel (top) mark the positions of the Indian, Tibetan and Asian Plates, respectively, as determined by the S receiver functions. Black dashed lines below the Moho represent the top interfaces of the subducting Indian and Asian mantle lithospheres.
Fig.14 Collision boundary between the Indian and Eurasia continents beneath the Tibetan Plateau (adapted from [21]). Blue and green bars with arrows mark the LAB observations of the Indian and Asian Plates, respectively. Yellow boxes mark the normal observations of the 410 km discontinuity, while red boxes mark the late arrivals of the converted phases from the 410 km discontinuity. Black bars denote sharp step in Moho depth at the northern margins of Tibet. Red dashed line marks zone of poor Sn propagation (adapted from [33]). QBF, Qaidam Basin Fault.
Fig.15 Relationship between the mantle lithospheres of India, Tibet and Asia, showing the west-east variations of the subduction angle and horizontal advancing distance of the Indian Plate. Blue and green colors represent the Indian and Asian mantle lithospheres, respectively. Red color marks the crash zone, which is a special lithospheric region sandwiched between the Indian and Asian Plates.
Fig.17 Map of the observation profile locations. Black lines denote the profile locations. Red lines indicate faults. Stars on each profile mark the shot points, with the red ones defining the relationship between the Tarim Basin and the surrounding orogenic belt. TP, Tibetan Plateau; TB, Tarim Basin; QB, Qaidam Basin; JB, Junggar Basin; AOB, Altai orogenic belt; CTS, Central Tien Shan; ETS, Eastern Tien Shan; AS, Altyn Tagh Shan; KS, KunLun Shan; KKS, Karakorum Shan.
Fig.18 Structure of the crust and uppermost mantle and tectonic interpretation along XB line (adapted from [42]). The upper panel shows the elevation (solid line) and Bouguer anomaly (dotted line). The lower panel shows the lithospheric structure. The locations of the seismic section and the shot points are shown in Fig.17. LVZs represent low velocity zones. Interfaces (solid lines) and faults (lines with high angles) are determined by deep seismic sounding, MT sounding, and gravitational inversion.
Fig.19 Seismic data and modeling example of SP Byblk. (a) Seismic records of SP Byblk. The shot point (at 0 km) is located in the southern part of the Tien Shan Orogenic Belt (see Fig.17 for SP location) and the receivers were deployed in the northern margin of the Tarim Basin, the Tien Shan Orogenic Belt and the southern margin of the Junggar Basin. All recorded seismic signals came from the same shot point at the same moment. The vertical axis indicates the travel time was reduced by 6 km/s. A 1-20 Hz bandpass filter and automatic gain control with 2 s window were applied. The thick solid lines show the identified effective seismic phases. The thin horizontal straight line at time of 0 s is a reference line. Travel times of all observed phases constitute the input data for ray tracing and synthetic seismogram. (b) Calculated theoretical amplitude. (c) Travel time fitting. The measured and calculated travel times reduced by 6 km/s are marked with ellipse and cross symbols, respectively. (d) Ray tracing. The vertical axis indicates depth in km. The thick lines are interfaces determined by modeling of the seismic phases. The horizontal axis indicates offset distance from the shot point.
Fig.20 Crust-mantle structure and tectonic interpretation along KJ line. (a) Elevation (black solid line) and Bouguer anomaly (blue dotted line) along KJ line. (b) Velocity structure and geodynamic model along this section. Solid lines are interfaces determined by deep seismic sounding and joint inversion of gravity and geomagnetism. Inverted triangles at the top of the profile denote shots. Arrows below the Moho indicate Moho movement direction. Thin dotted lines are velocity contours. Locations of the seismic section and the shot points are shown in Fig.17. TOB, Tien Shan Orogenic Belt.
Fig.21 Seismic data and modeling example for SP HOXUD. Shot point (at 0 km) lies in the southern part of Tien Shan Orogenic Belt and the receivers were set up in the northern margin of the Tarim Basin, the Tien Shan Orogenic Belt and the southern margin of the Junggar Basin. Locations of the shot and the seismic section are indicated in Fig.17. The horizontal axis represents offset distance from the shot point. Other descriptions are the sam as those in Fig.19.
Fig.22 Velocity structure of crust and upperomot mantle and tectonic interpretation along BD line (adapted from [44]). The fine structure within the box is shown in Fig.23.
Fig.23 Seismic data and modeling example for SP Yousha Shan (adapted from [44]). The shot point ( at 0 km) is located south of the Altyn Tagh fault in the Qaidam Basin (See Fig.17 for shot point location). The receivers were located in the Tarim Basin, Altyn Tagh Range and Qaidam Basin. Other descriptions are the same as in Fig.19. ATR, Altyn Tagh Range.
Fig.24 Map showing the locations of the profiles (left panel) and cartoons of the interaction of the crust and mantle lithosphere between the Tarim Block and the surrounding orogenic belts along four profiles (adapted from [19]). The crust is uniformly shown in yellow, and the mantle lithosphere of different units is shown in different colors: light green for the Tarim Basin, dark green for the Junggar Basin, red for the Tien Shan, and blue for the Tibetan Plateau. Black arrows indicate the moving direction. The acronyms are the same as in Fig.17.
Fig.25 (a) GPS velocity vectors (red arrows) in and around the Tarim Block in a reference frame of the stable Siberia, and (b) GPS velocity vectors (red arrows) in and around the Tarim block in the “Tarim surrounding vicinity fixed reference frame”. Adapted from [19]. The blue star indicates the Euler pole location of the clockwise rotation of the Tarim Block with respect to its surroundings. The blue vectors are the GPS velocity calculated by the simulation. Detailed interpretation can refer to [19].
Fig.26 Plate tectonic pattern in western China (adapted from [19]). Solid lines indicate the location of seismic profiles. The thick red lines mark the outer margin of the Tarim Plate lithosphere along four sections. Blue and red arrows indicate compressive or extensional stress environments. The red star indicates the position of the Euler pole, around which the Tarim Plate rotates regularly.
Fig.28 Ecosystem reconstruction in the early Oligocene. The left panel shows a dry-warm steppe environment dominated by rodent/lagomorph faunas in the Junggar Basin, while the right panel shows a warm-humid forest environment dominated by perissodactyl/artiodactyl faunas in Mongolia.
[1] |
DING L, MAKSATBEK S, CAI F L, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences, 2017, 60(4):635-651.
DOI URL |
[2] | ARGAND E. La tectonique de l’Asie[C]. Brussels: 13th Int. Geological Congress, 1924, 1(5):171-372. |
[3] |
WILLETT S D, BEAUMONT C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369:642-645.
DOI URL |
[4] |
MATTE P H, TAPPONNIER P, ARNAUD N, et al. Tectonics of Western Tibet, between the Tarim and Indus[J]. Earth and Planetary Science Letters, 1996, 142(3/4):311-330.
DOI URL |
[5] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
DOI URL |
[6] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294(5547):1671-1677.
DOI URL |
[7] |
CLARK M K, ROYDEN L. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28:703-706.
DOI URL |
[8] |
KIND R, YUAN X H, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298:1219-1221.
DOI URL |
[9] | KUMAR P, YUAN X H, KIND R, et al. Imaging the colliding Indian and Asian lithospheric plates beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2006, 111, B06308. |
[10] |
GAO R, LU Z W, KLEMPERER S, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9:555-560.
DOI URL |
[11] | 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学:D辑, 1996, 26(4):289-295. |
[12] | WANG C S, ZHAO X X, LIU Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13), 4987-4992. |
[13] | 张培震, 王琪, 马宗晋. 青藏高原现今构造变形特征与GPS速度场[J]. 地学前缘, 2002, 9(2):442-450. |
[14] | 许志琴, 杨经绥, 姜枚, 等. 大陆俯冲作用及青藏高原周缘造山带的崛起[J]. 地学前缘, 1999, 6(3):139-152. |
[15] | 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1):1-30. |
[16] |
ZHENG Y F, ZHAO Z F, CHEN Y X. Continental subduction channel processes: plate interface interaction during continental collision[J]. Chinese Science Bulletin, 2013, 58:4371-4377.
DOI URL |
[17] |
KUFNER S K, SCHURR B, SIPPL C, et al. Deep India meets deep Asia: lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia)[J]. Earth and Planetary Science Letters, 2016, 435:171-184.
DOI URL |
[18] | XU Q, ZHAO J M, YUAN X H, et al. Deep crustal contact between the Pamir and Tarim Basin deduced from receiver functions[J]. Geophysical Research Letters, 2021, 48(9):1-8. |
[19] |
ZHAO J M, ZHANG P Z, YUAN X H, et al. Clockwise rotation of the Tarim Basin driven by the Indian plate impact[J]. Earth Sciences and Subsoil Use, 2019, 42(4):425-436.
DOI URL |
[20] |
KUMAR P, YUAN X H, KIND R, et al. The lithosphere-asthenosphere boundary in the Tien Shan - Karakoram region from S receiver functions: evidence for continental subduction[J]. Geophysical Research Letters, 2005, 32(7). DOI: org/10.1029/2004GL022291.
DOI |
[21] | ZHAO J M, YUAN X H, LIU H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25):11229-11233. |
[22] |
ZHANG Z J, YUAN X H, CHEN Y, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J]. Earth and Planetary Science Letters, 2010, 292(3):254-264.
DOI URL |
[23] |
WITTLINGER G, VERGNE J, TAPPONNIER P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1):117-130.
DOI URL |
[24] |
ZHU L, HELMBERGER D V. Moho offset across the northern margin of the Tibetan Plateau[J]. Science, 1998, 281(5380):1170-1172.
DOI URL |
[25] |
SHI D, SHEN Y, ZHAO W J, et al. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the northeast Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 288(1-2):329-334.
DOI URL |
[26] | YUAN X H, NI J, KIND R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. Journal of Geophysical Research: Solid Earth, 1997, 102:27491-27500. |
[27] |
WITTLINGER G, FARRA V, HETÉNYI G , et al. Seismic velocities in southern Tibet lower crust: a receiver function approach for eclogite detection[J]. Geophysical Journal International, 2009, 177:1037-1049.
DOI URL |
[28] |
NÁB E ˙LEK J, HETÉNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946):1371-1374.
DOI URL |
[29] |
HELFFRICH G. Topography of the transition zone seismic discontinuities[J]. Reviews of Geophysics, 2000, 38(1):141-158.
DOI URL |
[30] |
KARATO S I. Importance of anelasticity in the interpretation of seismic tomography[J]. Geophysical Research Letters, 1993, 20(15):1623-1626.
DOI URL |
[31] |
GUO X Y, GAO R, ZHAO J M, et al. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185:751-762.
DOI URL |
[32] |
LI C, VAN DER HILST R D, MELTZER A S , et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274:157-168.
DOI URL |
[33] |
BARAZANGI M, NI J. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet[J]. Geology, 1982, 10(4):179-185.
DOI URL |
[34] |
KIND R, YUAN X H. Seismic images of the biggest crash on earth[J]. Science, 2010, 329(5998):1479-1480.
DOI URL |
[35] |
TAPPONNIER P, PELZER G, LE DAIN A Y , et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616.
DOI URL |
[36] |
HOUSEMAN G, ENGLAND P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research, 1993, 98(B7):12233-12249.
DOI URL |
[37] | 钱祥麟. 新生代板内造山作用研究: 认识中国区域地质构造基本特征的关键[J]. 地学前缘, 2004, 11(3):221-225. |
[38] |
MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189:419-426.
DOI URL |
[39] |
SUN J M, LIU T. The age of the taklimakan desert[J]. Science, 2006, 312(5780):1621-1621.
DOI URL |
[40] |
SUN J M, ZHANG L Y, DENT C L, et al. Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma[J]. Quaternary Science Reviews, 2008, 27(9/10):1012-1023.
DOI URL |
[41] |
AVOUAC P, TAPPONNIER P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10):895-898.
DOI URL |
[42] |
ZHAO J M, LIU G D, LU Z X, et al. Lithospheric structure and dynamic processes of the Tianshan Orogenic Belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3/4):199-239.
DOI URL |
[43] | 赵俊猛. 天山造山带岩石圈结构与动力学[M]. 北京: 地震出版社, 2005: 1-251. |
[44] |
ZHAO J M, MOONEY W D, ZHANG X K, et al. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan plateau and tectonic implications[J]. Earth and Planetary Science Letters, 2006, 241:804-814.
DOI URL |
[45] | ZHAO J M, SHAH S, ZHANG H, et al. Density and magnetic intensity of the crust and uppermost mantle across the northern margin of the Tibetan Plateau[J]. Physics of the Earth & Planetary Interiors, 2017, 265:15-22. |
[46] | 赵俊猛, 金之钧, 刘训. 中国西北部拜城-大柴旦地学断面[M]. 北京: 科学出版社, 2010: 1-64. |
[47] |
ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11), 9290-9312.
DOI URL |
[48] |
LI Q, YOU X Z, YANG S M, et al. A precise velocity field of tectonic deformation in China as inferred from intensive GPS observations[J]. Science China: Earth Sciences, 2012, 55(5):695-698.
DOI URL |
[49] | ZUBOVICH A V, WANG X Q, SCHERBA Y G, et al. GPS velocity field for the Tien Shan and surrounding regions[J]. Tectonics 29, 2010, TC6014. |
[50] |
CHEN Y, COGNE J P, COURTILLOT V, et al. New Cretaceous paleomagnetic poles from the Tarim Basin, northwestern China[J]. Earth and Planetary Science Letters, 1992, 114(1):17-38.
DOI URL |
[51] |
CHEN W P, MARTIN M, TSENG T L, et al. Shear-wave birefringence and current configuration of converging lithosphere under Tibet[J]. Earth and Planetary Science Letters, 2010, 295(1-2):297-304.
DOI URL |
[52] |
DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455:49-61.
DOI URL |
[53] | BURTMAN V S, MOLNAR P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geological Society of America Special Paper, 1993, 281:76. |
[54] |
SUN J M, LIU W, LIU Z, et al. Extreme aridification since the beginning of the pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485:189-200.
DOI URL |
[55] |
YE J, WU W Y, NI X J, et al. The Duolebulejin section of northern Junggar Basin and its stratigraphic and environmental implication[J]. Scientia Sinica Terrae, 2012, 42:1523-1532.
DOI URL |
[56] |
SUN J M, NI X J, BI S D, et al. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene boundary in Asia[J]. Scientific Reports, 2014, 4:7463.
DOI URL |
[57] |
MENG J, MCKENNA M C. Faunal turnovers of Palaeogene mammal from the Mongolian Plateau[J]. Nature, 1998, 394:364-367.
DOI URL |
[58] | 王伴月, 常江, 孟宪家, 等. 内蒙千里山地区中、上渐新统的发现及其意义[J]. 古脊椎动物与古人类, 1981, 19(1):26-34. |
[1] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[2] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[3] | GONG Chenglin, LIU Li, SHAO Dali, GUO Rongtao, ZHU Yijie, QI Kun. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model [J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
[4] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[5] | JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong. Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure [J]. Earth Science Frontiers, 2022, 29(4): 385-402. |
[6] | LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 356-380. |
[7] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[8] | GAO Rui, ZHOU Hui, LU Zhanwu, GUO Xiaoyu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau [J]. Earth Science Frontiers, 2022, 29(2): 14-27. |
[9] | LU Zhanwu, GAO Rui, Simon KLEMPERER, WANG Haiyan, DONG Shuwen, LI Wenhui, LI Hongqiang. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya [J]. Earth Science Frontiers, 2022, 29(2): 210-217. |
[10] | Xiaojun WANG, Yong SONG, Baoli BIAN, Junmeng ZHAO, Heng ZHANG, Maodu YAN, Shunping PEI, Qiang XU, Shuaijun WANG, Hongbing LIU, Changhui JU. Basement structure of the Junggar Basin [J]. Earth Science Frontiers, 2021, 28(6): 235-255. |
[11] | FAN Fu, HOU Xianhua, ZHENG Mianping, MENG Fanwei, YANG Zhenjing, MIAO Qing. Homogenization temperature of fluid inclusions in Early-Middle Pleistocene halite from Liang Hole ZK02 in Dalangtan area, Qaidam Basin and its constraints on potash mineralization [J]. Earth Science Frontiers, 2021, 28(6): 105-114. |
[12] | HOU Xianhua, WANG Wei, ZHENG Mianping, FAN Fu, LI Hongpu, GAO Xuefeng. Seismic response characteristics of the Heibei Concave-Dalangtan potassium-rich deep brine reservoir in western Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(6): 134-145. |
[13] | ZHANG Heng, XU Tuanwei, PEI Shunping, ZHAO Junmeng. Application of distributed acoustic sensing in structural investigation of Lake Yigong in Tibet [J]. Earth Science Frontiers, 2021, 28(6): 227-234. |
[14] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
[15] | GAO Rui, ZHOU Hui, GUO Xiaoyu, LU Zhanwu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(5): 320-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||