Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 230-259.DOI: 10.13745/j.esf.sf.2021.9.38

• A spacial section on The India-Eurasia Collision and Its Long-Range Effec • Previous Articles     Next Articles

Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project

ZHAO Junmeng1,2,*(), ZHANG Peizhen3, ZHANG Xiankang4, Xiaohui YUAN5, Rainer KIND5, Robert van der HILST6, GAN Weijun7, SUN Jimin8, DENG Tao9, LIU Hongbing1, PEI Shunping1,2, XU Qiang1, ZHANG Heng1, JIA Shixu4, YAN Maodu1,2, GUO Xiaoyu3, LU Zhanwu10, YANG Xiaoping7, DENG Gong1, JU Changhui1   

  1. 1. State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Sun Yat-sen University, Guangzhou 510275, China
    4. Geophysical Exploration Center, Chinese Earthquake Administration, Zhengzhou 450002, China
    5. GFZ German Research Centre for Geosciences, Potsdam 14473, Germany
    6. Massachusetts Institute of Technology, MA 02139, USA
    7. Institute of Geology, China Earthquake Administration, Beijing 100029, China
    8. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    9. Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
    10. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2021-09-05 Revised:2021-09-20 Online:2021-09-25 Published:2021-10-29
  • Contact: ZHAO Junmeng

Abstract:

In order to systematically and thoroughly study the crust-mantle structure and deep geodynamic processes of basins, mountains and plateaus of western China, we proposed and led the implementation of the ANTILOPE Project (Array Network of Tibetan International Lithospheric Observation and Probe Experiments) in 2003. So far, we have completed four 2D broadband arrays, ANTILOPE-I to ANTILOPE-IV, on the Tibetan Plateau, and deployed two 3D broadband arrays, ANTILOPE-V and ANTILOPE-VI, at the eastern and western Himalayan syntaxis, respectively. In addition, we included in our study framework nine comprehensive geophysical observation profiles previously obtained from the Junggar Basin, Tienshan Orogenic Belt, Tarim Basin, Altyn Orogenic Belt, and Qaidam Basin.
Through the implementation of the ANTILOPE Project, we collected a large amount of high-quality, comprehensive first-hand observational data from western China (including the basin-mountain system surrounding the Tibetan Plateau in the northwest and the Tibetan Plateau in the southwest). The fine crust-mantle structure systematically reveals the deep geodynamic processes of the basin-mountain-plateau geosystem in western China. The up-to-date main research progress can be summarized as follows. The structure and properties of the basement of the Junggar Basin have been determined, and the basement structural framework has been optimized. A new intracontinental orogenic model of lithospheric subduction with crustal interlayer intrusion in the Tienshan Orogenic Belt has been established, which reveals the fate of the 44% shortened Tienshan lithosphere after the India-Eurasia collision and the conversion mechanism from ocean-continent subduction to continent-continent collision and subduction. Our results reveal the basin-mountain contact relationship between the Tarim Basin, Altyn Orogenic Belt and Qaidam Basin. We have obtained the deep geometric, kinematic and geodynamic evidence for the clockwise rotation of the Tarim Basin, and determined the collision boundary between the Indian and the Eurasian Plates under the Tibetan Plateau. We also found that the current Tibetan Plateau consists of the Indian Plate in the south, the Eurasian Plate in the north, and the giant crush zone—also called the “Tibetan Plate”—between them. For the first time, the respective lithospheric bottom boundaries are determined; two end-member models of plateau deformation are corrected; and the constraints of deep structures on the surface topography are established. Our result systematically reveals the changing pattern and controlling factors of the horizontal advancing distance and the subduction angle of the Indian Plate along the Himalayan Orogenic Belt.
By combining a huge observation network with comprehensive geophysical detection technologies, the ANTILOPE Project adopts different methods, including geophysical, geological and geochemical methods, to reveal the subduction of the Indian continent, the development of the giant crush zone in Tibet, the clockwise rotation of the Tarim Block, the accelerated closure of the western water vapor channel, and the advance of aridification and desertification in northwest China and their constraints on surface topography, oil and gas resources, and environmental variations. The above results have promoted the development of the Earth system theory in the Tibetan Plateau.

Key words: ANTILOPE, tectonic frame of Basin-Mountain-Plateau in western China, Junggar Basin, Tienshan Orogenic Belt, Tarim Basin, Altyn Orogenic Belt, Qaidam Basin, Tibetan Plateau, Pamir, crust-mantle structure, deep dynamic processes, comprehensive geophysics, Earth system science

CLC Number: