Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 114-124.DOI: 10.13745/j.esf.sf.2021.2.4
Previous Articles Next Articles
ZHANG Zhenyu1(), XU Weiwei2, DENG Yaping3, REN Jinghua2, SHI Xiaoqing1,*(), WU Jichun1
Received:
2020-05-20
Revised:
2021-08-19
Online:
2021-09-25
Published:
2021-10-29
Contact:
SHI Xiaoqing
CLC Number:
ZHANG Zhenyu, XU Weiwei, DENG Yaping, REN Jinghua, SHI Xiaoqing, WU Jichun. Complex resistivity properties and spectral parameters of TCE contaminated soils[J]. Earth Science Frontiers, 2021, 28(5): 114-124.
样品 | 类型 | 阳离子交换容/ (cmol·kg-1) | 有机质含 量/% | 不同粒径颗粒占比/% | 比表面积BET/ (m2·g-1) | pH值 | Zeta电位/mV | ||
---|---|---|---|---|---|---|---|---|---|
黏粒 | 粉粒 | 砂粒 | |||||||
土样A | 砂质土 | 10.76 | 0.16 | 9.56 | 10.37 | 80.07 | 21.22 | 9.75 | -22.8 |
土样B | 粉砂质土 | 5.52 | 0.29 | 6.65 | 76.87 | 16.48 | 8.57 | 7.62 | -22.6 |
Table 1 Physical and chemical properties of soil samples
样品 | 类型 | 阳离子交换容/ (cmol·kg-1) | 有机质含 量/% | 不同粒径颗粒占比/% | 比表面积BET/ (m2·g-1) | pH值 | Zeta电位/mV | ||
---|---|---|---|---|---|---|---|---|---|
黏粒 | 粉粒 | 砂粒 | |||||||
土样A | 砂质土 | 10.76 | 0.16 | 9.56 | 10.37 | 80.07 | 21.22 | 9.75 | -22.8 |
土样B | 粉砂质土 | 5.52 | 0.29 | 6.65 | 76.87 | 16.48 | 8.57 | 7.62 | -22.6 |
[1] | 罗兰. 我国地下水污染现状与防治对策研究[J]. 中国地质大学学报(社会科学版), 2008, 8(2):72-75. |
[2] | 陈鸿汉, 何江涛, 刘菲, 等. 太湖流域某地区浅层地下水有机污染特征[J]. 地质通报, 2005, 24(8):735-739. |
[3] | 刘雪松, 蔡五田, 李胜涛. 石油类污染场地土壤与地下水污染调查实例分析[J]. 水文地质工程地质, 2010, 37(4):121-125. |
[4] | 刘雪松, 蔡五田, 李胜涛. 土壤与地下水中DNAPL的污染机理与调查技术[J]. 油气田环境保护, 2011, 21(6): 37-39, 43, 81. |
[5] |
ATEKWANA E A, ATEKWANA E A. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review[J]. Surveys in Geophysics, 2010, 31(2):247-283.
DOI URL |
[6] | 钟秋. 地下水污染调查中的地球物理方法[J]. 地下水, 2014, 36(2):57-58. |
[7] | 井柳新, 文一, 刘伟江, 等. 地下水有机污染场地地球物理方法调查探讨[J]. 环境保护科学, 2015, 41(6):69-71. |
[8] | RUBIN Y, HUBBARD S S. Hydrogeophysics[M]. Amsterdam: Springer Science & Business Media, 2006. |
[9] |
HE C, WANG Y L, WANG M, et al. Construction of structural reference model for ERT data inversion in heavy metal contaminated sites surveys[J]. International Journal of Applied Systemic Studies, 2018, 8(3):218.
DOI URL |
[10] |
VANHALA H. Mapping oil-contaminated sand and till with the spectral induced polarization (sip) method[J]. Geophysical Prospecting, 1997, 45(2):303-326.
DOI URL |
[11] | 能昌信, 刘玉强, 刘豪睿, 等. 铬污染土壤的导电性、频谱激电性和介电特性的实验结果[J]. 环境科学, 2011, 32(3):758-765. |
[12] | 孙亚坤, 能昌信, 刘玉强, 等. 铬污染土壤电阻率特性及其影响因素研究[J]. 环境科学学报, 2011, 31(9):1992-1998. |
[13] | 刘豪睿, 孙亚坤, 能昌信, 等. 铬污染土壤复电阻率频散特性[J]. 物探与化探, 2010, 34(3):372-375. |
[14] |
SCHMUTZ M, REVIL A, VAUDELET P, et al. Influence of oil saturation upon spectral induced polarization of oil-bearing sands[J]. Geophysical Journal International, 2010, 183(1):211-224.
DOI URL |
[15] |
REVIL A, SCHMUTZ M, BATZLE M L. Influence of oil wettability upon spectral induced polarization of oil-bearing sands[J]. Geophysics, 2011, 76(5):A31-A36.
DOI URL |
[16] | 蒋才洋, 邓居智, 陈辉, 等. 有机物污染土壤复电阻率频散特性实验[J]. 工程地球物理学报, 2014, 11(3):387-395. |
[17] |
CAPACCIOLI S, LUCCHESI M, CASALINI R, et al. Influence of the wettability on the electrical response of microporous systems[J]. Journal of Physics D: Applied Physics, 2000, 33(9):1036-1047.
DOI URL |
[18] | SCHMUTZ M, BLONDEL A, REVIL A. Saturation dependence of the quadrature conductivity of oil-bearing sands[J]. Geophysical Research Letters, 2012, 39(3):L03402. |
[19] |
ATEKWANA E A, ATEKWANA E, LEGALL F D, et al. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer[J]. Journal of Contaminant Hydrology, 2005, 80(3/4):149-167.
DOI URL |
[20] | 杨振威, 许江涛, 赵秋芳, 等. 复电阻率法(CR)发展现状与评述[J]. 地球物理学进展, 2015, 30(2):899-904. |
[21] | 童茂松, 丁柱. 岩石复电阻率频谱模型参数的反演[J]. 测井技术, 2006, 30(4):303-305, 384. |
[22] |
DIAS C A. Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics, 2000, 65(2):437-451.
DOI URL |
[23] |
NORDSIEK S, WELLER A. A new approach to fitting induced-polarization spectra[J]. Geophysics, 2008, 73(6):F235-F245.
DOI URL |
[24] |
USTRA A, SLATER L, NTARLAGIANNIS D, et al. Spectral induced Polarization (SIP) signatures of clayey soils containing toluene[J]. Near Surface Geophysics, 2012, 10(6):503-515.
DOI URL |
[25] |
GAO Z, HAEGEL F H, HUISMAN J A, et al. Spectral induced polarization for the characterisation of biochar in sand[J]. Near Surface Geophysics, 2017, 15(6):645-656.
DOI URL |
[26] | 罗延钟, 张桂青. 频率域激电法原理[M]. 北京: 地质出版社, 1988. |
[27] |
VINEGAR H J, WAXMAN M H. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8):1267-1287.
DOI URL |
[28] |
BÖRNER F D, SCHOPPER J R, WELLER A. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements1[J]. Geophysical Prospecting, 1996, 44(4):583-601.
DOI URL |
[29] |
SLATER L D, LESMES D. IP interpretation in environmental investigations[J]. Geophysics, 2002, 67(1):77-88.
DOI URL |
[30] |
LEROY P, REVIL A, KEMNA A, et al. Complex conductivity of water-saturated packs of glass beads[J]. Journal of Colloid and Interface Science, 2008, 321(1):103-117.
DOI URL |
[31] |
TITOV K, KOMAROV V, TARASOV V, et al. Theoretical and experimental study of time domain-induced polarization in water-saturated sands[J]. Journal of Applied Geophysics, 2002, 50(4):417-433.
DOI URL |
[32] |
WELLER A, BREEDE K, SLATER L, et al. Effect of changing water salinity on complex conductivity spectra of sandstones[J]. Geophysics, 2011, 76(5):F315-F327.
DOI URL |
[33] | 何继善. 双频激电法[M]. 北京: 高等教育出版社, 2006. |
[34] |
REVIL A, SKOLD M. Salinity dependence of spectral induced polarization in sands and sandstones[J]. Geophysical Journal International, 2011, 187(2):813-824.
DOI URL |
[35] |
DENG Y P, SHI X Q, REVIL A, et al. Complex conductivity of oil-contaminated clayey soils[J]. Journal of Hydrology, 2018, 561:930-942.
DOI URL |
[36] |
NIU Q F, REVIL A, SAIDIAN M. Salinity dependence of the complex surface conductivity of the Portland sandstone[J]. Geophysics, 2016, 81(2):D125-D140.
DOI URL |
[37] |
WELLER A, SLATER L. Salinity dependence of complex conductivity of unconsolidated and consolidated materials: comparisons with electrical double layer models[J]. Geophysics, 2012, 77(5):D185-D198.
DOI URL |
[38] |
HALIHAN T, SEFA V, SALE T, et al. Mechanism for detecting NAPL using electrical resistivity imaging[J]. Journal of Contaminant Hydrology, 2017, 205:57-69.
DOI URL |
[39] | SCHNEIDER G W, GREENHOUSE J P. Geophysical detection of perchloroethylene in a sandy aquifer using resistivity and nuclear logging techniques[C]//5th EEGS symposium on the application of geophysics to engineering and environmental problems. Oakbrook: European Association of Geoscientists & Engineers, 1992: 619-628. |
[40] | KUMAR M, SOK R, KNACKSTEDT M A, et al. Mapping 3D pore scale fluid distributions: how rock resistivity is influenced by wettability and saturation history[J]. Petrophysics, 2010, 51(2):102-117. |
[41] | REVIL A, CATHLES Ⅲ L M, LOSH S , et al. Electrical conductivity in shaly sands with geophysical applications[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10):23925-23936. |
[42] |
JOHANSSON S, FIANDACA G, DAHLIN T. Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study[J]. Journal of Applied Geophysics, 2015, 123:295-309.
DOI URL |
[43] |
MARINOVA K G, ALARGOVA R G, DENKOV N D, et al. Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions[J]. Langmuir, 1996, 12(8):2045-2051.
DOI URL |
[44] |
BREEDE K, KEMNA A, ESSER O, et al. Spectral induced polarization measurements on variably saturated sand-clay mixtures[J]. Near Surface Geophysics, 2012, 10(6):479-489.
DOI URL |
[45] | BINLEY A, SLATER L D, FUKES M, et al. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone[J]. Water Resources Research, 2005, 41(12):W12417. |
[1] | LIU Yang, XIE Wenjing, ZHENG Yunsong, ZHANG Yaoqiang, CAI Qizheng, YUAN Songhu. Electrolytic circulation well drives chemical oxidation of TCE in a simulated aquife [J]. Earth Science Frontiers, 2021, 28(5): 197-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||