| [1] | 李海明, 陈鸿汉, 郑西来. 某城市工业区浅层地下水CAHs污染特征[J]. 地学前缘, 2005, 12(增刊1):132-138. | 
																													
																							| [2] | 中华人民共和国国土资源部和水利部, 全国国土资源标准化技术委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2018. | 
																													
																							| [3] | 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8):2015-2024. | 
																													
																							| [4] | SIEGRIST R L, CRIMI M, SIMPKIN T J, et al. ISCO status and future directions[M]//SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 535-545. | 
																													
																							| [5] | 杨乐巍, 张岳, 李书鹏, 等. 原位化学氧化高压注射修复优化设计与应用案例分析[J]. 环境工程, 2019, 37(8):185-189. | 
																													
																							| [6] | WHITE B C, WONG R, COLLINS W E, et al. Draft removal action closeout report time-critical removal action installation restoration Site 5 - Unit 2 Naval Air Station North Island San Diego, California[R]. San Diego: Shaw Environmental & Infrastructure,Inc, 2003. | 
																													
																							| [7] | WEST O R, CLINE S R, HOLDEN W L, et al. A full-scale demonstration of in-situ chemical oxidation through recirculation at the X-701B site[R]. Oak Ridge: Office of Scientific and Technical Information(OSTI), 1997. | 
																													
																							| [8] | GAVASKAR A, CONDIT W, HARRE K. Cost and performance report for a persulfate treatability study at naval air station north island[R]. Columbus: Defense Technical Information Center, 2008. | 
																													
																							| [9] | PETRI B G, WATTS R J, TEEL A L, et al. Fundamentals of ISCO using hydrogen peroxide[M]//SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 33-88. | 
																													
																							| [10] | SIMPKIN T J, PALAIA T, PETRI B G, et al. Oxidant delivery approaches and contingency planning[M]//SIEGRIST R L, CRIMI M, SIMPKIN T J. In-situ chemical oxidation for groundwater remediation. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7826-4-11. DOI
 | 
																													
																							| [11] | KREMBS F J, CLAYTON W S, MARLEY M C. Evaluation of ISCO Field applications and performance[M]//SIEGRIST R L, CRIMI M, SIMPKIN T J. In-situ chemical oxidation for groundwater remediation. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7826-4-8. DOI
 | 
																													
																							| [12] | TSITONAKI A, PETRI B, CRIMI M, et al. In-situ chemical oxidation of contaminated soil and groundwater using persulfate: a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91. DOI    
																																					URL
 | 
																													
																							| [13] | TONG M, YUAN S, MA S, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1):214-221. DOI    
																																					URL
 | 
																													
																							| [14] | YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(Ⅱ) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223:422-436. DOI    
																																					URL
 | 
																													
																							| [15] | YUAN S H, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2021, 64(2):251-260. DOI    
																																					URL
 | 
																													
																							| [16] | JONES A M, GRIFFIN P J, WAITE T D. Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid[J]. Geochimica et Cosmochimica Acta, 2015, 160:117-131. DOI    
																																					URL
 | 
																													
																							| [17] | WANG N, JIA D Q, JIN Y Y, et al. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH[J]. Environmental Science and Pollution Research International, 2017, 24(21):17598-17605. DOI    
																																					URL
 | 
																													
																							| [18] | JIA D Q, SUN S P, WU Z X, et al. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: sand columns demonstration[J]. Journal of Hazardous Materials, 2018, 346:124-132. DOI    
																																					URL
 | 
																													
																							| [19] | ZHANG Y, ZHOU M H. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362:436-450. DOI    
																																					URL
 | 
																													
																							| [20] | WEATHERILL J J, ATASHGAHI S, SCHNEIDEWIND U, et al. Natural attenuation of chlorinated ethenes in hyporheic zones: a review of key biogeochemical processes and in-situ transformation potential[J]. Water Research, 2018, 128:362-382. DOI    
																																					URL
 | 
																													
																							| [21] | LAINE P, MATILAINEN R. Simultaneous determination of DTPA, EDTA, and NTA by UV-visible spectrometry and HPLC[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7):1601-1609. DOI    
																																					URL
 | 
																													
																							| [22] | YUAN S H, CHEN M J, MAO X H, et al. Effects of reduced sulfur compounds on Pd-catalytic hydrodechlorination of trichloroethylene in groundwater by cathodic H2 under electrochemically induced oxidizing conditions[J]. Environmental Science & Technology, 2013, 47(18):10502-10509. | 
																													
																							| [23] | YUAN S H, CHEN M J, MAO X H, et al. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling[J]. Water Research, 2013, 47(1):269-278. DOI    
																																					URL
 | 
																													
																							| [24] | YUAN S H, XIE S W, ZHAO K Y, et al. Field tests of in-well electrolysis removal of arsenic from high phosphate and iron groundwater[J]. Science of the Total Environment, 2018, 644:1630-1640. DOI    
																																					URL
 | 
																													
																							| [25] | YOU X J, LIU S G, DAI C M, et al. Acceleration and centralization of a back-diffusion process: effects of EDTA-2Na on cadmium migration in high- and low-permeability systems[J]. Science of the Total Environment, 2020, 706. | 
																													
																							| [26] | 刘雅莉, 刘菲, 黄伟英. 菱铁矿催化过氧化氢-过硫酸钠修复地下水中TCE时对微生物的影响[J]. 地学前缘, 2014, 21(4):186-190. | 
																													
																							| [27] | BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886. DOI    
																																					URL
 | 
																													
																							| [28] | WANG H Y, WANG J, ZHANG W, et al. Comparison of performance in a bioelectrochemical system for simultaneous denitrification and vanadate (V) removal using hydrogen as the sole electron donor[J]. Geomicrobiology Journal, 2020, 37(4):301-307. DOI    
																																					URL
 | 
																													
																							| [29] | CARERE C R, MCDONALD B, PEACH H A, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph[J]. Frontiers in Microbiology, 2019, 10:1873. DOI    
																																					URL
 | 
																													
																							| [30] | YOU X J, LIU S G, DAI C M, et al. Acceleration and centralization of a back-diffusion process: effects of EDTA-2Na on cadmium migration in high- and low-permeability systems[J]. Science of the Total Environment, 2020, 706:135708. | 
																													
																							| [31] | 刘洋, 袁松虎, 张耀强, 等. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯[J]. 水文地质工程地质, 2020, 47(3):44-51. | 
																													
																							| [32] | 李玮, 王明玉, 韩占涛, 等. 棕地地下水污染修复技术筛选方法研究: 以某废弃化工厂污染场地为例[J]. 水文地质工程地质, 2016, 43(3):131-140. | 
																													
																							| [33] | 苗竹, 吕正勇, 魏丽, 等. 地下水循环井技术概述[C]//2018中国环境科学学会科学技术年会论文集. 北京: 中国环境科学学会, 2018: 714-719. |