Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 175-185.DOI: 10.13745/j.esf.sf.2021.2.21
Previous Articles Next Articles
ZHANG Weimin1,2(), WANG Zhen2,*(), QIAN Cheng2, GUO Yadan2, LIU Haiyan2
Received:
2020-05-21
Revised:
2020-08-18
Online:
2021-09-25
Published:
2021-10-29
Contact:
WANG Zhen
CLC Number:
ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution[J]. Earth Science Frontiers, 2021, 28(5): 175-185.
试验条件 | 单位 | 取值 | 方法 |
---|---|---|---|
CLHC用量 | g·L-1 | 0.3,0.5,0.7,0.9,1.0 | 25 ℃恒温气浴,167 r/min震荡,震荡时间为4 h,U初始浓度为5.0 mg·L-1 |
溶液pH值 | 2.0,3.0,4.0,5.5,6.5,7.5 | ||
试验周期 | min | 10,30,60,90,120,180,240 | |
U的初始浓度 | mg·L-1 | 2,5,7,9,11 |
Table 1 Experimental parameters for the static tests
试验条件 | 单位 | 取值 | 方法 |
---|---|---|---|
CLHC用量 | g·L-1 | 0.3,0.5,0.7,0.9,1.0 | 25 ℃恒温气浴,167 r/min震荡,震荡时间为4 h,U初始浓度为5.0 mg·L-1 |
溶液pH值 | 2.0,3.0,4.0,5.5,6.5,7.5 | ||
试验周期 | min | 10,30,60,90,120,180,240 | |
U的初始浓度 | mg·L-1 | 2,5,7,9,11 |
浓度 | FODM参数 | SODM参数 | |||||
---|---|---|---|---|---|---|---|
Qe/ (mg·g-1) | a1/ min-1 | R2 | Qe/ (mg·g-1) | a2/ (g·mg-1·min-1) | R2 | ||
5 mg·L-1 | 4.36 | 0.02 | 0.96 | 10.4 | 0.01 | 0.99 |
Table 2 Characteristic fitting parameters using FODM and SODM
浓度 | FODM参数 | SODM参数 | |||||
---|---|---|---|---|---|---|---|
Qe/ (mg·g-1) | a1/ min-1 | R2 | Qe/ (mg·g-1) | a2/ (g·mg-1·min-1) | R2 | ||
5 mg·L-1 | 4.36 | 0.02 | 0.96 | 10.4 | 0.01 | 0.99 |
温度 | LIAM | FIAM | |||||
---|---|---|---|---|---|---|---|
qm/ (mg·g-1) | KL/ (L·mg-1) | R2 | KF/ (L·mg-1) | 1/n | R2 | ||
26 ℃ | 11.7 | 1.37 | 0.995 | 8.52 | 0.107 | 0.871 |
Table 3 Characteristic fitting parameters using LIAM and FIAM
温度 | LIAM | FIAM | |||||
---|---|---|---|---|---|---|---|
qm/ (mg·g-1) | KL/ (L·mg-1) | R2 | KF/ (L·mg-1) | 1/n | R2 | ||
26 ℃ | 11.7 | 1.37 | 0.995 | 8.52 | 0.107 | 0.871 |
编号 | CLHC | U的初始浓度/ (mg·L-1) | 流量/ (L·h-1) | pH值 | 穿透时间点 | 耗竭时间点 | 间隔/h |
---|---|---|---|---|---|---|---|
A | 方解石 | 5.0 | 0.32 | 4.0 | 107 h时 | 624 h时 | 516 |
B | 石英砂 | 5.0 | 0.32 | 4.0 | 101 h时 | 581 h时 | 482 |
Table 4 Statistical table of test parameters for dynamic columns A and B
编号 | CLHC | U的初始浓度/ (mg·L-1) | 流量/ (L·h-1) | pH值 | 穿透时间点 | 耗竭时间点 | 间隔/h |
---|---|---|---|---|---|---|---|
A | 方解石 | 5.0 | 0.32 | 4.0 | 107 h时 | 624 h时 | 516 |
B | 石英砂 | 5.0 | 0.32 | 4.0 | 101 h时 | 581 h时 | 482 |
编号 | U的初始浓度/ (mg·L-1) | 流速/ (L·h-1) | 总时间/ h | CLHC用 量/g | 柱吸附U的 总量/g | 柱饱和单位 吸附量/ (mg·g-1) | 柱总流 量/L | 进液总U 量/g |
---|---|---|---|---|---|---|---|---|
A | 5.0 | 0.32 | 627 | 29.8 | 0.42 | 14.3 | 197 | 0.99 |
B | 5.0 | 0.32 | 557 | 29.1 | 0.36 | 12.5 | 183 | 0.91 |
Table 5 Parameters of Columns A and B
编号 | U的初始浓度/ (mg·L-1) | 流速/ (L·h-1) | 总时间/ h | CLHC用 量/g | 柱吸附U的 总量/g | 柱饱和单位 吸附量/ (mg·g-1) | 柱总流 量/L | 进液总U 量/g |
---|---|---|---|---|---|---|---|---|
A | 5.0 | 0.32 | 627 | 29.8 | 0.42 | 14.3 | 197 | 0.99 |
B | 5.0 | 0.32 | 557 | 29.1 | 0.36 | 12.5 | 183 | 0.91 |
Fig.8 Results of scanning electron microscopy. (a) Calcite before adsorption; (b) CLHC before adsorption;(c) Calcite after adsorption; (b) CLHC after adsorption.
[1] | 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展[J]. 地学前缘, 2014, 21(4):158-167. |
[2] | ZHANG W M, GUO Y D, PAN Z P, et al. Remediation of a uranium-contaminayed groundwater using the permeable reactive barrier technique coupled with hydroxyapatite-coated quartz sands[J]. Fresenius Environmental Bulletin, 2018, 27(5):2703-2716. |
[3] |
ZHANG W M, LIU H Y, FAN X R, et al. Removal of uranium from aqueous solution by a permeable reactive barrier loaded with hydroxyapatite-coated quartz sand: implication for groundwater remediation[J]. Geochemistry, 2020, 80(4):125545.
DOI URL |
[4] | 钱程, 张卫民. PRB反应介质材料在地下水污染修复中的应用研究进展[J]. 环境工程, 2018, 36(6):1-5, 11. |
[5] |
ZHANG W S, CHENG C Y, PRANOLO Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes[J]. Hydrometallurgy, 2010, 101(1/2):58-63.
DOI URL |
[6] | ROEHL K E, CZURDA K, MEGGYES T, et al. Permeable reactive barriers[M]//Long-term performance of permeable reactive barriers. Amsterdam: Elsevier, 2005: 1-25. |
[7] | NAFTZ D L, MORRISON S J, DAVIS J A, et al. Hand-book of groundwater remediation using permeable reactive barriers: applications to radionuclides, Trace Metals, and Nutrients[M]. Amsterdam: Academic Press, 2002: 435-463. |
[8] |
LIU N, DING F, WANG L, et al. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater[J]. Environmental Science and Pollution Research, 2016, 23(10):9972-9983.
DOI URL |
[9] | GROUDEV S, GEPRGIEV P, SPASOVA I, et al. Cleanup of acid mine drainage by means of a pilot-scale passive system[J]. Annual of the University of Mining and Geology, 2005, 48:217-220. |
[10] | 李志红, 王广才, 史浙明, 等. 渗透反应格栅技术综述: 填充材料实验研究、修复技术实例和系统运行寿命[J]. 环境化学, 2017, 36(2):316-327. |
[11] | 张晓峰, 陈迪云, 涂国清, 等. 羟基磷灰石与天然磷灰石去除铀的效果和机理研究[J]. 原子能科学技术, 2014, 48(增刊1):56-63. |
[12] | BROWN G E, FOSTER A L, OSTERGREN J D. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3388-3395. |
[13] | 肖薇. 改性热解炭的表征及对水体中污染物的吸附研究[D]. 郑州: 郑州大学, 2015: 82-95. |
[14] | 郭学. 新型磷酰基功能化材料的制备及铀吸附性能和机理研究[D]. 济南: 山东大学, 2018: 102-105. |
[15] | 钱程, 张卫民. 纳米HAP复合型材料吸附水中镍离子性能[J]. 无机盐工业, 2019, 51(2):45-49. |
[16] | 冯孝庭. 吸附分离技术[M]. 北京: 化学工业出版社, 2000: 184-195. |
[17] | 高继贤, 王铁峰, 王光润, 等. 不同烟气水蒸气体积分数时ZL50活性炭吸附SO2的动力学[J]. 清华大学学报(自然科学版), 2010, 50(3):434-437. |
[18] | 任春溶. 磁性纳米复合材料的制备及其对重金属离子的吸附性能研究[D]. 杭州: 浙江大学, 2017: 92-105. |
[19] | 胡奇. 改性生物质材料对水中苯胺的吸附性能及去除工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 44-46. |
[20] | 曾琼瑶, 阳鹏飞, 雷卫瑞, 等. ZnS/AC复合材料的制备及对铀酰离子的吸附性能[J]. 精细化工, 2019, 36(4):751-758. |
[21] |
LANGMUIR I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1):102-105.
DOI URL |
[22] |
FREUNDLICH H. Über Die adsorption in Lösungen[J]. Zeitschrift Für Physikalische Chemie, 1907, 57U(1):385-470.
DOI URL |
[23] |
NUR T, LOGANATHAN P, NGUYEN T C, et al. Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling[J]. Chemical Engineering Journal, 2014, 247:93-102.
DOI URL |
[24] |
THOMAS H C. Heterogeneous ion exchange in a flowing system[J]. Journal of the American Chemical Society, 1944, 66(10):1664-1666.
DOI URL |
[25] |
XU Z, CAI J G, PAN B C. Mathematically modeling fixed-bed adsorption in aqueous systems[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(3):155-176.
DOI URL |
[26] |
LIAO D X, ZHENG W, LI X M, et al. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste[J]. Journal of Hazardous Materials, 2010, 177(1/2/3):126-130.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||