[1] |
李圣品, 刘菲, 黄国鑫, 等. 傍河型水源井氨氮阻断与去除工程设计案例分析[J]. 环境科学学报, 2015, 35(8):2471-2480.
|
[2] |
田雷. 复合介质PRB去除地下水中氯代烃和苯系物混合污染研究[D]. 北京: 中国地质大学(北京), 2014.
|
[3] |
PHILLIPS D H. Permeable reactive barriers: a sustainable technology for cleaning contaminated groundwater in developing countries[J]. Desalination, 2009, 248(1/2/3):352-359.
DOI
URL
|
[4] |
陆泗进, 王红旗. 地下水污染修复的可渗透性反应墙技术[J]. 上海环境科学, 2005, 24(6):231-236.
|
[5] |
O’HANNESIN S F, GILLHAM R W. Long-term performance of an in-situ “iron wall” for remediation of VOCs[J]. Groundwater, 1998, 36(1):164-170.
DOI
URL
|
[6] |
YABUSAKI S, CANTRELL K, SASS B, et al. Multicomponent reactive transport in an in-situ zero-valent iron cell[J]. Environmental Science & Technology, 2001, 35(7):1493-1503.
DOI
URL
|
[7] |
MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science & Technology, 2003, 37(10):2302-2309.
DOI
URL
|
[8] |
黄园英, 刘菲, 鲁雅梅. 零价铁去除Cr(Ⅵ)的批试验研究[J]. 岩石矿物学杂志, 2003, 22(4):349-351.
|
[9] |
李雅, 张增强, 唐次来, 等. Fe0去除地下水中六价铬的研究[J]. 中国农业大学学报, 2011, 16(2):160-164.
|
[10] |
曾云嵘. PRB技术处理铀尾矿库渗漏地下水中锰的效果研究[D]. 抚州: 东华理工大学, 2017.
|
[11] |
高阳阳, 刘国, 陈春梅, 等. 改性纳米铁/炭填充PRB去除地下水硝态氮研究[J]. 中国环境科学, 2016, 36(10):3019-3025.
|
[12] |
董桂花. 零价铁PRB复合二氧化锰去除四环素的性能研究[D]. 济南: 山东大学, 2018.
|
[13] |
钱程. PRB修复地下水中铀污染物的模拟试验研究[D]. 抚州: 东华理工大学, 2019.
|
[14] |
何叶. 黄铁矿作为PRB填充材料吸附水中U(Ⅵ)的试验研究[D]. 衡阳: 南华大学, 2019.
|
[15] |
HOU G H, LIU F, LIU M Z, et al. Performance of a permeable reactive barrier for in-situ removal of ammonium in groundwater[J]. Water Science & Technology: Water Supply, 2014, 14(4):585-592.
|
[16] |
滕应, 陈梦舫. 稀土尾矿区地下水污染风险评估与防控修复研究[M]. 北京: 科学出版社, 2016.
|
[17] |
中国科学院南京土壤研究所宋昕团队. 原长沙铬盐厂可渗透反应墙(PRB)原位修复铬污染地下水[EB/OL].(2019-04-04)[2019-07-14]. http://www.rem-tech.cn/news/html/?526.html.
|
[18] |
BLOWES D W, GILLHAM R W, PTACEK C J, et al. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 1 design and installation[M]. Washington D C: United States Environmental Protection Agency, 1999.
|
[19] |
GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2):41-71.
DOI
URL
|
[20] |
HUANG D D, WANG G C, LI Z H, et al. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system[J]. Environmental Science and Pollution Research, 2017, 24(22):18341-18354.
DOI
URL
|
[21] |
李思琪. Cr(Ⅵ)污染地下水修复的复合Fe0-PRB填料试验研究[D]. 福州: 福州大学, 2018.
|
[22] |
WANNER C, ZINK S, EGGENBERGER U, et al. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling[J]. Journal of Contaminant Hydrology, 2012, 131(1/2/3/4):54-63.
DOI
URL
|
[23] |
BLOWES D W, PTACEK C J, BENNER S G, et al. Treatment of dissolved metals using permeable reactive barriers[J]. Groundwater Quality: Remediation and Protection, 1998, 250:483-490.
|
[24] |
COURCELLES B, MODARESSI-FARAHMAND-RAZAVI A, GOUVENOT D, et al. Influence of precipitates on hydraulic performance of permeable reactive barrier filters[J]. International Journal of Geomechanics, 2011, 11(2):142-151.
DOI
URL
|
[25] |
LI Z H, JONES H K, BOWMAN R S, et al. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron[J]. Environmental Science & Technology, 1999, 33(23):4326-4330.
DOI
URL
|
[26] |
SCHNEIDER R M, CAVALIN C F, BARROS M A S D, et al. Adsorption of chromium ions in activated carbon[J]. Chemical Engineering Journal, 2007, 132(1/2/3):355-362.
DOI
URL
|
[27] |
POWELL R M, PULS R W, HIGHTOWER S K, et al. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation[J]. Environmental Science & Technology, 1995, 29(8):1913-1922.
DOI
URL
|
[28] |
TURNER M, DAVE N M, MODENA T, et al. Permeable reactive barriers: lessons learned/new directions[M]. Washington D C: Interstate Technology & Regulatory Council, 2005: 2-3.
|