Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (4): 194-205.DOI: 10.13745/j.esf.sf.2020.6.40
Previous Articles Next Articles
ZHANG Jingtao1,2(), SHI Zheming1,*(
), WANG Guangcai1, JIANG Jun3, YANG Bingchao3
Received:
2020-05-12
Revised:
2020-10-20
Online:
2021-07-25
Published:
2021-07-25
Contact:
SHI Zheming
CLC Number:
ZHANG Jingtao, SHI Zheming, WANG Guangcai, JIANG Jun, YANG Bingchao. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(4): 194-205.
水样类型 | 野外编号 | ρB/(mg•L-1) | pH值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Cl- | | | | TDS | |||
山区泉水 | W142 | 13.5 | 141 | 66.7 | 35.6 | 147 | 183 | 276 | — | 838 | 8.48 |
冲洪积平原潜水 | TK1-1 | 4.57 | 96.2 | 59.4 | 20.5 | 136 | 131 | 144 | 1.11 | 508 | 8.12 |
TK2-1 | 2.98 | 55.1 | 31.9 | 6.94 | 49.4 | 50.9 | 132 | 0.64 | 280 | 8.20 | |
W67 | 3.97 | 122 | 20.1 | 17.5 | 111 | 139 | 97.8 | 0.86 | 536 | 8.76 | |
W137 | 5.37 | 356 | 58.2 | 29.2 | 422 | 337 | 80.0 | — | 1 194 | 7.78 | |
冲洪积平原承压水 | TK1-2 | 4.37 | 75.0 | 52.8 | 15.5 | 102 | 87.1 | 150 | 0.88 | 398 | 8.13 |
TK2-2 | 3.97 | 35.6 | 33.8 | 10.5 | 47.8 | 30.1 | 141 | 0.79 | 228 | 8.25 | |
冲洪积平原前缘潜水 | W7 | 6.16 | 126 | 239 | 43.8 | 150 | 712 | 198 | — | 1 408 | 7.89 |
W150 | 10.5 | 681 | 659 | 23.4 | 671 | 2 214 | 193 | — | 4 840 | 7.88 | |
W164 | 11.5 | 586 | 641 | 53.6 | 507 | 2 310 | 136 | — | 3 810 | 7.83 | |
W152 | 101 | 5 713 | 313 | 482 | 8 827 | 2 695 | 652 | — | 18 940 | 7.92 | |
细土平原泉水 | W9 | 6.16 | 85.1 | 94.0 | 37.5 | 132 | 260 | 184 | — | 806 | 7.86 |
W20 | 5.76 | 81.1 | 61.8 | 29.7 | 131 | 144 | 178 | — | 660 | 8.00 | |
W83 | 4.57 | 67.7 | 45.8 | 17.5 | 91.8 | 78.9 | 166 | — | 432 | 8.19 | |
W84 | 4.77 | 69.5 | 54.6 | 16.6 | 93.6 | 73.2 | 204 | — | 438 | 7.65 | |
W43 | 5.17 | 65.8 | 51.4 | 18.5 | 84.7 | 77.0 | 204 | — | 530 | 7.78 | |
W54 | 3.97 | 109 | 49.0 | 18.0 | 136 | 110 | 169 | 0.73 | 532 | 8.30 | |
W89 | 3.58 | 56.8 | 39.4 | 14.1 | 67.1 | 57.8 | 163 | — | 366 | 8.12 | |
盐沼平原地下水 | W169 | 13.3 | 264 | 58.2 | 47.5 | 404 | 250 | 172 | — | 1 344 | 8.14 |
W176 | 25.0 | 633 | 177 | 102 | 932 | 789 | 308 | — | 3 032 | 8.08 | |
W177 | 6 357 | 109 100 | 361 | 15 943 | 173 010 | 67 376 | 1.0 | — | 383 640 | 8.65 | |
河水 | W13 | 4.37 | 58.6 | 71.5 | 28.3 | 49.4 | 231 | 157 | — | 570 | 8.34 |
W57 | 2.58 | 97.4 | 73.9 | 23.9 | 115 | 189 | 181 | 1.15 | 652 | 8.48 | |
W58 | 4.57 | 122 | 120 | 39.9 | 141 | 390 | 172 | — | 970 | 8.37 | |
W10 | 4.57 | 73.3 | 61.0 | 24.8 | 106 | 141 | 163 | — | 548 | 8.38 | |
W44 | 8.15 | 126 | 69.1 | 54.1 | 150 | 120 | 441 | — | 826 | 8.40 | |
W178 | 6.95 | 150 | 69.9 | 38.0 | 185 | 110 | 358 | 0.81 | 850 | 8.48 | |
湖水 | W90 | 735 | 39 425 | 482 | 2 643 | 68 851 | 6 545 | 335 | — | 122 840 | 8.48 |
Table 1 Results of statistical analysis of hydrogeochemical compositions of piedmont spring and groundwater in the alluvial-proluvial plain
水样类型 | 野外编号 | ρB/(mg•L-1) | pH值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Cl- | | | | TDS | |||
山区泉水 | W142 | 13.5 | 141 | 66.7 | 35.6 | 147 | 183 | 276 | — | 838 | 8.48 |
冲洪积平原潜水 | TK1-1 | 4.57 | 96.2 | 59.4 | 20.5 | 136 | 131 | 144 | 1.11 | 508 | 8.12 |
TK2-1 | 2.98 | 55.1 | 31.9 | 6.94 | 49.4 | 50.9 | 132 | 0.64 | 280 | 8.20 | |
W67 | 3.97 | 122 | 20.1 | 17.5 | 111 | 139 | 97.8 | 0.86 | 536 | 8.76 | |
W137 | 5.37 | 356 | 58.2 | 29.2 | 422 | 337 | 80.0 | — | 1 194 | 7.78 | |
冲洪积平原承压水 | TK1-2 | 4.37 | 75.0 | 52.8 | 15.5 | 102 | 87.1 | 150 | 0.88 | 398 | 8.13 |
TK2-2 | 3.97 | 35.6 | 33.8 | 10.5 | 47.8 | 30.1 | 141 | 0.79 | 228 | 8.25 | |
冲洪积平原前缘潜水 | W7 | 6.16 | 126 | 239 | 43.8 | 150 | 712 | 198 | — | 1 408 | 7.89 |
W150 | 10.5 | 681 | 659 | 23.4 | 671 | 2 214 | 193 | — | 4 840 | 7.88 | |
W164 | 11.5 | 586 | 641 | 53.6 | 507 | 2 310 | 136 | — | 3 810 | 7.83 | |
W152 | 101 | 5 713 | 313 | 482 | 8 827 | 2 695 | 652 | — | 18 940 | 7.92 | |
细土平原泉水 | W9 | 6.16 | 85.1 | 94.0 | 37.5 | 132 | 260 | 184 | — | 806 | 7.86 |
W20 | 5.76 | 81.1 | 61.8 | 29.7 | 131 | 144 | 178 | — | 660 | 8.00 | |
W83 | 4.57 | 67.7 | 45.8 | 17.5 | 91.8 | 78.9 | 166 | — | 432 | 8.19 | |
W84 | 4.77 | 69.5 | 54.6 | 16.6 | 93.6 | 73.2 | 204 | — | 438 | 7.65 | |
W43 | 5.17 | 65.8 | 51.4 | 18.5 | 84.7 | 77.0 | 204 | — | 530 | 7.78 | |
W54 | 3.97 | 109 | 49.0 | 18.0 | 136 | 110 | 169 | 0.73 | 532 | 8.30 | |
W89 | 3.58 | 56.8 | 39.4 | 14.1 | 67.1 | 57.8 | 163 | — | 366 | 8.12 | |
盐沼平原地下水 | W169 | 13.3 | 264 | 58.2 | 47.5 | 404 | 250 | 172 | — | 1 344 | 8.14 |
W176 | 25.0 | 633 | 177 | 102 | 932 | 789 | 308 | — | 3 032 | 8.08 | |
W177 | 6 357 | 109 100 | 361 | 15 943 | 173 010 | 67 376 | 1.0 | — | 383 640 | 8.65 | |
河水 | W13 | 4.37 | 58.6 | 71.5 | 28.3 | 49.4 | 231 | 157 | — | 570 | 8.34 |
W57 | 2.58 | 97.4 | 73.9 | 23.9 | 115 | 189 | 181 | 1.15 | 652 | 8.48 | |
W58 | 4.57 | 122 | 120 | 39.9 | 141 | 390 | 172 | — | 970 | 8.37 | |
W10 | 4.57 | 73.3 | 61.0 | 24.8 | 106 | 141 | 163 | — | 548 | 8.38 | |
W44 | 8.15 | 126 | 69.1 | 54.1 | 150 | 120 | 441 | — | 826 | 8.40 | |
W178 | 6.95 | 150 | 69.9 | 38.0 | 185 | 110 | 358 | 0.81 | 850 | 8.48 | |
湖水 | W90 | 735 | 39 425 | 482 | 2 643 | 68 851 | 6 545 | 335 | — | 122 840 | 8.48 |
主要矿物及气体 | 主要矿物饱和指数 | |||
---|---|---|---|---|
极小值 | 极大值 | 均值 | 标准差 | |
SI(方解石) | -0.33 | 1.58 | 0.68 | 0.45 |
SI(白云石) | -0.86 | 5.21 | 1.15 | 1.28 |
SI(岩盐) | -7.31 | 0.47 | -5.80 | 1.78 |
SI(石膏) | -2.32 | 0.48 | -1.28 | 0.73 |
SI(钠长石) | -12.68 | 1.99 | -6.11 | 3.36 |
SI(钙长石) | -11.88 | -2.29 | -7.21 | 2.26 |
SI(钾长石) | -11.53 | 2.65 | -4.98 | 3.29 |
SI(绿泥石) | -9.67 | 24.13 | 3.26 | 12.79 |
SI(石英) | -4.45 | -1.06 | -2.55 | 0.98 |
SI(伊利石) | -17.84 | 2.78 | -6.37 | 5.75 |
SI(高岭石) | -13.77 | 2.58 | -3.21 | 5.54 |
SI(蒙脱石) | -21.37 | 0.02 | -7.49 | 7.15 |
SI CO2(g) | -10.38 | -2.29 | -5.03 | 3.24 |
Table 2 List of saturation indices of major minerals in the study area
主要矿物及气体 | 主要矿物饱和指数 | |||
---|---|---|---|---|
极小值 | 极大值 | 均值 | 标准差 | |
SI(方解石) | -0.33 | 1.58 | 0.68 | 0.45 |
SI(白云石) | -0.86 | 5.21 | 1.15 | 1.28 |
SI(岩盐) | -7.31 | 0.47 | -5.80 | 1.78 |
SI(石膏) | -2.32 | 0.48 | -1.28 | 0.73 |
SI(钠长石) | -12.68 | 1.99 | -6.11 | 3.36 |
SI(钙长石) | -11.88 | -2.29 | -7.21 | 2.26 |
SI(钾长石) | -11.53 | 2.65 | -4.98 | 3.29 |
SI(绿泥石) | -9.67 | 24.13 | 3.26 | 12.79 |
SI(石英) | -4.45 | -1.06 | -2.55 | 0.98 |
SI(伊利石) | -17.84 | 2.78 | -6.37 | 5.75 |
SI(高岭石) | -13.77 | 2.58 | -3.21 | 5.54 |
SI(蒙脱石) | -21.37 | 0.02 | -7.49 | 7.15 |
SI CO2(g) | -10.38 | -2.29 | -5.03 | 3.24 |
矿物相 | 化学式 | 摩尔浓度变化/(mmol•L-1) | |
---|---|---|---|
W142→W137 | W137→W176 | ||
方解石 | CaCO3 | -1.255 | -7.245 |
白云石 | CaMg(CO3)2 | -0.336 | 5.886 |
岩盐 | NaCl | 7.976 | 13.130 |
石膏 | CaSO4·2H2O | 1.701 | 4.313 |
CO2(g) | CO2 | -1.684 | * |
NaX | NaX | 0.809 | 0.356 |
CaX2 | CaX2 | -0.405 | -0.178 |
钠长石 | NaAlSi3O8 | 0.000 1 | 0.280 |
钙长石 | CaAl2Si2O8 | * | 0.420 |
石英 | SiO2 | 0.001 | * |
绿泥石 | Mg5Al2Si3O10(OH)6 | * | -0.560 |
Table 3 Results of the reverse hydrogeochemical simulation
矿物相 | 化学式 | 摩尔浓度变化/(mmol•L-1) | |
---|---|---|---|
W142→W137 | W137→W176 | ||
方解石 | CaCO3 | -1.255 | -7.245 |
白云石 | CaMg(CO3)2 | -0.336 | 5.886 |
岩盐 | NaCl | 7.976 | 13.130 |
石膏 | CaSO4·2H2O | 1.701 | 4.313 |
CO2(g) | CO2 | -1.684 | * |
NaX | NaX | 0.809 | 0.356 |
CaX2 | CaX2 | -0.405 | -0.178 |
钠长石 | NaAlSi3O8 | 0.000 1 | 0.280 |
钙长石 | CaAl2Si2O8 | * | 0.420 |
石英 | SiO2 | 0.001 | * |
绿泥石 | Mg5Al2Si3O10(OH)6 | * | -0.560 |
[1] |
SUN Z Y, MA R, WANG Y X, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological Processes, 2016, 30(12):1884-1902.
DOI URL |
[2] |
BARBECOT F, MARLIN C, GIBERT E, et al. Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France)[J]. Applied Geochemistry, 2000, 15(6):791-805.
DOI URL |
[3] |
SIKDAR P K, SARKAR S S, PALCHOUDHURY S. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India[J]. Journal of Asian Earth Sciences, 2001, 19(5):579-594.
DOI URL |
[4] |
YE C Y, ZHENG M P, WANG Z M, et al. Hydrochemical characteristics and sources of brines in the Gasikule salt lake, Northwest Qaidam Basin, China[J]. Geochemical Journal, 2015, 49(5):481-494.
DOI URL |
[5] |
XIAO Y, SHAO J L, CUI Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China[J]. Journal of Earth System Science, 2017, 126(2):1-16.
DOI URL |
[6] | 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4):734-743. |
[7] |
YANG N, WANG G C, SHI Z M, et al. Application of multiple approaches to investigate the hydrochemistry evolution of groundwater in an arid region: Nomhon, northwestern China[J]. Water, 2018, 10(11):1-18.
DOI URL |
[8] | 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. |
[9] |
WANG J J, LIANG X, LIU Y F, et al. Hydrogeochemical evolution along groundwater flow paths in the manas river basin, Northwest China[J]. Groundwater, 2019, 57(4):575-589.
DOI URL |
[10] | 张勇, 杨庆云. 大柴旦镇幅区域水文地质普查报告[R]. 西宁: 青海省地质局, 1983: 50-51. |
[11] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
DOI URL |
[12] | 党慧慧, 董军, 岳宁, 等. 贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究[J]. 冰川冻土, 2015, 37(3):793-802. |
[13] | XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70/71:250-264. |
[14] | ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8):1535-1548. |
[15] |
WANG H, JIANG X W, WAN L, et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology, 2015, 527:433-441.
DOI URL |
[16] | SCHOELLER H. Qualitative evaluation of groundwater resources[M]//Methods and techniques of groundwater investigation and development. Paris: United Nations Educational, Scientific and Cultural Organization, 1967, 33:54-83. |
[17] |
ZHU B Q, WANG X M, RIOUAL P. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China[J]. Journal of Hydrology, 2017, 549:92-113.
DOI URL |
[18] | FARID I, TRABELSI R, ZOUARI K, et al. Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia[J]. Environmental Earth Sciences, 2013, 68(5):1215-1231. |
[19] | 吕晓立, 孙继朝, 刘景涛, 等. “三滩”水源地地下水演化及地球化学模拟[J]. 人民黄河, 2014, 36(10):84-88. |
[20] |
SOUMYA B S, SEKHAR M, RIOTTE J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, South India[J]. Geoderma, 2011, 165(1):12-24.
DOI URL |
[21] | 高春亮, 张丽莎, 余俊清, 等. 大柴旦盐湖卤水演变及环境变化的矿物学记录[J]. 地球化学, 2011, 40(2):156-162. |
[22] | 高春亮, 余俊清, 闵秀云, 等. 大柴旦盐湖化学沉积特征及其控制因素[J]. 盐湖研究, 2015, 23(1):22-29. |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | ZHANG Aikui, YUAN Wanming, LIU Guanglian, ZHANG Yong, WANG Zhouxin, SUN Feifei, LIU Zhigang. Metallogenic regularities and exploration directions of strategic metallic minerals around the Qaidam Basin [J]. Earth Science Frontiers, 2024, 31(3): 260-283. |
[3] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[4] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[5] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[6] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[7] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[8] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[9] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[10] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[11] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[12] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[13] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[14] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[15] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||