Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 28-45.DOI: 10.13745/j.esf.sf.2023.12.27
Previous Articles Next Articles
ZHANG Yanbin1(), ZHAI Mingguo1,2,*(), ZHOU Yanyan1,2, ZHOU Ligang1
Received:
2023-10-26
Revised:
2023-11-21
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust[J]. Earth Science Frontiers, 2024, 31(1): 28-45.
Fig.9 p-T conditions during post-metamorphic uplift, Bamble, Norway. Modified after [60]. 1-10: ‘representative isochores’; a to g: estimates from mineral assemblages; a to c: prehnite-pumpelleyite; d to g: peak metamorphic associations. Shaded square at the lower left corner of c: ‘preferred’ for anatexis in Songe amphibolite; Doted line: modeled uplift path; A to E: successive fluid regimes during post-metamorphic uplift.
Fig.10 Phase diagrams for H2O and CO2. Adapted from [61]. × marks the critical conditions of these materials. The short-dashed lines indicate the temperatures below which the “dense” supercritical H2O and CO2 exist.
Fig.11 REE patterns of argillaceous granulite (Khondalite) and anatectic granite (a, adapted from [74] ) and p-T conditions for partial melting of mafic granulite under different depth ranges (b, adapted from [75])
[1] | WINDLEY B F. Overview and history of investigation of early Earth history[M]//VAN KRANENDONK M J, SMITH R H, BENNETT V C. Earth's oldest rocks. Amsterdam: Elsevier, 2007: 3-7. |
[2] | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046. |
[3] | 翟明国, 张艳斌, 李秋立, 等. 克拉通、下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37(1): 1-23. |
[4] |
ROGERS J J W, SANTOSH M T. Tectonics and surface effects of the Supercontinent Columbia[J]. Gondwana Research, 2009, 15: 373-380.
DOI URL |
[5] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. |
[6] | 吴福元, 徐义刚, 朱日祥, 等. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44 (11): 2358-2372. |
[7] |
BOHLEN S R, MERZGER K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science, 1989, 244: 326-329.
DOI URL |
[8] | 钱祥麟, 崔文元, 王时麒. 内蒙冀东太古界麻粒岩相带的演化[G]//地质论文集. 北京: 北京大学出版社, 1985: 20-29. |
[9] | 赵宗溥等. 中朝准地台前寒武纪地壳演化[M]. 北京: 科学出版社, 1993: 389-439. |
[10] | 沈其韩, 徐惠芬, 张宗清, 等. 中国前寒武纪麻粒岩[M]. 北京: 地质出版社, 1992: 221-223. |
[11] | MA X Y. Geological observation for southern and northern parts along the geological profile of Xiangshui, Jiangsu-Mandula, Inner Mongolia[J]. Journal of Earth Science, 1989, 14: 1-6. |
[12] |
GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432: 892-897.
DOI |
[13] |
KERN H, Gao S, LIU Q S L. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect[J]. Earth and Planetary Science Letters, 1996, 139: 439-455.
DOI URL |
[14] |
RUDNICK R L, FOUTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33: 267-309.
DOI URL |
[15] | PERCIVAL J A, FOUTAIN D M, SALIBURY M H. Exposed crustal cross-sections as windows of the lower crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 317-319. |
[16] | CHRISTENSEN N I, MOONEY W D. Seismic velocity structure and composition of the continental crust: a global view[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 9761-9788. |
[17] | WEAVER B L, TARNEY J. Elemental depletion in Archaean granilite facies rocks[M]//ATHERTON M P, GRIBBLE C D. Migmatite, melting and metamorphism. Nantwich, Cheshire: Shiva Publication, 1983: 250-263. |
[18] | FOUNTAIN D M, PERCIVAL J A, SALIBURY M H. Exposed cross-sections of the continental crust-synopsis[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 653-662. |
[19] | WEBER W, MEGER K. An oblique cross section of Archaean continental crust at the northwestern margin of Superior Province, Manitoba, Canada[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 327-341. |
[20] | NEWTON R C. The late Archaean high-grade terrene of south India and the deep structure of the Dharwar craton[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 305-326. |
[21] | HOLBROOK W S, MOONEY W D, CHRISTENSEN N I. The seismic velocity structure of the deep continental crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 1-43. |
[22] |
BOHLERN S R. Pressure-temperature-time paths and a tectonic model for the evolution of granulites[J]. Journal of Geology, 1987, 95: 617-632.
DOI URL |
[23] | RUDNICK R L, PRESPER T. Geochemistry of intermediate- to high-pressure granulites[M]//VIELZEUF D, VIDAL P. Granulites and crustal evolution. Amsterdam: Kluwer Academic Publishers, 1990: 523-550. |
[24] | NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2013, 25(1). http://dx.doi.org/10.1016/j.gr.2012.12.026. |
[25] | WAN Y S, LIU D Y, XIE H Q, et al. Formation ages and environments of Early Precambrian banded iron formation in the North China Carton[M]//ZHAI M G, ZHAO Y, ZHAO T. Main tectonic events and metallogeny of the North China Craton. Singapore: Springer, 2016: 65-83. |
[26] |
GENG Y S, DU L L, REN LD. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21: 517-529.
DOI URL |
[27] | ARTEMIEVA I, MOONEY W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research: Solid Earth, 2001, 106: 16387-16414. |
[28] |
MOYEN J F, VAN HUNEN J. Short-termepisodicity of Archean plate tectonics[J]. Geology, 2012, 40: 451-454.
DOI URL |
[29] | 翟明国, 郭敬辉, 阎月华, 等. 太古宙克拉通型下地壳剖面: 华北怀安-丰镇-尚义的麻粒岩-角闪岩系[J]. 岩石学报, 1996, 12(2): 222-238. |
[30] | CARSWELL D A. Eclogites and eclogite facies, definitions and classifications[M]//CARSWELL D A. Eclogite facies rocks. New York: Blackie, 1990: 1-13. |
[31] | 翟明国, 郭敬辉, 阎月华, 等. 中国华北太古宙高压基性麻粒岩的发现及其初步研究[J]. 中国科学: B辑, 1992, 12: 1325-1330. |
[32] | 阎月华. 大同孤山含石榴石麻粒岩的成因讨论[M]//钱祥麟, 王仁民.华北北部麻粒岩带地质演化. 北京: 地震出版社, 1994: 199-209. |
[33] | 刘宇光. 冀西北及相邻地区的早前寒武纪地质及地壳演化[D]. 北京: 中国科学院地质研究所, 1988. |
[34] | PERCIVAL J A. A field guide to the Kapuskasing uplift: a cross section through the Archaean superior province[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 227-286. |
[35] | ATAL B S, BHALLA N S, LALL Y, et al. Radioactive elemental distribution in the granulite terrains and Dharwar schist belts of Peninsular India[J]. Developments in Precambrian Geology, 1978, 5: 205-220. |
[36] | 张友南, 孙君秀. 华北地壳岩石波速类型及其地质意义[J]. 地震地质, 1998, 20(1): 73-81. |
[37] | 祝治平, 张先康, 张建狮, 等. 北京-怀来-丰镇剖面地壳上地幔构造与速度结构图[J]. 地震学报, 1997, 19: 99-505. |
[38] | ZHAI M G, GUO J H, LIU W J. An oblique cross-section of Precambrian lower crust in the North China Craton[J]. Physics and Chemistry of the Earth, 2001, 26: 781-792. |
[39] | GOU L L, ZHAI M G, ZHANG C L, et al. Ultrahigh temperature metamorphism and isobaric cooling of Neoarchean ultramafic-mafic granulites in the southern granulite terrain, India: phase equilibrium modelling and SHRIMP zircon U-Pb dating[J]. Journal of Metamorphic Geology, 2022, 40(5). DOI: 10.1111/jmg.12654. |
[40] | 赵磊, 张儒诚, 孙伟清, 等. 华北克拉通东部胶北地体早前寒武纪表壳岩系: 研究进展与综述[J]. 岩石学报, 2023, 39 (8): 2211-2237. |
[41] |
ZOU Y, LI Q L, CHU X. Older orogens cooled slower: new constraints on Orosirian tectonics from garnet difusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton[J]. Contributions to Mineralogy and Petrology, 2021, 176: 91.
DOI |
[42] | 翟明国. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题[J]. 岩石学报, 2009, 25: 1753-1771. |
[43] |
ZHOU L G, ZHAI M G, LU J S, et al. Paleoproterozoic metamorphism of high-grade granulite facies rocks in the North China Craton: study advances, questions and new issues[J]. Precambrian Research, 2017, 303: 520-547.
DOI URL |
[44] | 侯泉林, 郭谦谦, 陈艺超, 等. 山脉与造山带及有关问题讨论[J]. 岩石学报, 2021, 37(8): 2287-2302. |
[45] |
LIN S F. Synchronous vertical and horizontal tectonism in the Neoarchean: kinematic evidence from a synclinal keel in the northwestern Superior Craton, Canada[J]. Precambrian Research, 2005, 139: 181-194.
DOI URL |
[46] |
LIN S F, PARKS J, HEAMAN L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of “Timiskaming-type” sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift[J]. Precambrian Research, 2013, 238: 148-157.
DOI URL |
[47] |
FOUNTAIN D M, SALISBURY M H. Exposed cross-sections through the continental crust: implications for crustal structure, petrology and evolution[J]. Earth and Planetary Science Letters, 1981, 56: 263-277.
DOI URL |
[48] |
WANG E, BURCHFIEL B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geology Review, 1997, 39 (3): 191-219.
DOI URL |
[49] |
WANG Q, ZHANG P Z, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by Global Positioning System measurement[J]. Science, 2001, 294 (5542): 574-577.
DOI URL |
[50] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276: 788-790.
PMID |
[51] |
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28 (8): 703-706.
DOI URL |
[52] | 陈小宇, 刘俊来, 翁少腾. 青藏高原东南缘晚渐新世-早中新世中下地壳流动: 滇西瑶山与玉龙变质杂岩构造解析[J]. 岩石学报, 2020, 36 (8): 2558-2570. |
[53] | 王椿镛, 王溪莉, 苏伟, 等. 青藏高原东缘下地壳流动的地震学证据[J]. 四川地震, 2006, 4: 1-4. |
[54] | 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 2020, 8(1): 2249-2275 |
[55] | 翟明国. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义[J]. 大地构造与成矿, 2006, 30(4): 419-421. |
[56] | CONDIE K C. Precambrian superplume event[M]//ERIKSSON P G, ALTERMANN W, NELSON D R, et al. The Precambrian Earth tempos and events. Amsterdam: Elsevier, 2004: 163-172. |
[57] | CONDIE K C, KRÖNER A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America, Special Paper, 2008, 440: 281-294. |
[58] | TURET J. Fluid inclusions in high grade metamorphic rocks[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to petrology. Waterloo: Mineralogyical Association of Canada, 1981: 182-208. |
[59] | TURET J. DIETVORST P. Fluid inclusions in high grade anatectic metamorphites[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to geology. London: Mineralogical Association, 1983: 635-649. |
[60] | 梅冥相. 冥古宙的地层学属性: 了解地球形成初期古地理背景和演变历史的重要线索[J]. 古地理学报, 2016, 18(4): 513-524. |
[61] |
LIU L. The inception of the oceans and CO2: atmosphere in the early history of the Earth[J]. Earth and Planetary Science Letters, 2004, 227: 179-184.
DOI URL |
[62] | 沈昆, 张泽明, 孙晓明, 等. 超高压变质流体的组成与演化: 中国大陆科学钻探工程主孔岩心的流体包裹体研究[J]. 岩石学报, 2005, 21(2): 489-504. |
[63] |
LU J S, ZHAI M G, ZHAO L. P-T-t evolution of Neoarchaean to Paleoproterozoic pelitic granulites from the Jidong terrane, eastern North China Craton[J]. Precambrian Research, 2017, 290: 1-15
DOI URL |
[64] | 魏春景. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义[J]. 岩石学报, 2018, 34(4): 895-912. |
[65] |
LIU T, WEI C J. Metamorphic p-T paths and zircon U-Pb ages of Archean ultrahigh temperature paragranulites from the Qian’an gneiss dome, East Hebei Terrane, North China Craton[J]. Journal of Metamorphic Geology, 2020, 38(4): 329-356.
DOI URL |
[66] | 崔润泽, 魏春景, 段站站. 华北克拉通清原地体新太古代和古元古代两期麻粒岩相变质作用[J]. 岩石学报, 2023, 39(8): 2257-2278. |
[67] |
FROST B R, FROST C D. CO2, melts, and granulite metamorphism[J]. Nature, 1987, 327: 503-506.
DOI |
[68] |
HARLEY S L. Refining the p-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 2008, 26(2): 125-154.
DOI URL |
[69] |
DHARMAPRIYA P L. MALAVIARACHCHI S R K, GALLI A, et al. p-T evolution of a spinel + quartz bearing khondalite from the Highland Complex, Sri Lanka: implications for non-UHT metamorphism[J]. Journal of Asian Earth Sciences, 2014, 95: 99-113.
DOI URL |
[70] |
GUO J H, PENG P, CHEN Y, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 2012, 222/223: 124-142.
DOI URL |
[71] |
WU J L, ZHANG H F, ZHAI M G, et al. Pelitic high-pressure granulite from the Huai’an Complex, North China Craton: metamorphic p-T evolution and geological implications[J]. Precambrian Research, 2016, 278: 323-336.
DOI URL |
[72] |
YANG Q Y, SANTOSH M, WADA H. Graphite mineralization in Paleoproterozoic khondalites of the North China Craton: a carbon isotope study[J]. Precambrian Research, 2014, 255: 641-652.
DOI URL |
[73] |
YIN C Q, ZHAO G C, SUN M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constraints on the evolution of the Khondalite Belt in the western block of the North China Craton[J]. Precambrian Research, 2009, 174: 78-94.
DOI URL |
[74] |
ZHAI M G, GUO J H, LI Y G, et al. Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution[J]. Precambrian Research, 2003, 127: 267-283.
DOI URL |
[75] | 张喜松. 下地壳超高温深熔和-2.5 Ga的克拉通化[D]. 北京: 中国科学院地质与地球物理研究所, 2023. |
[76] | 翟明国, 李永刚, 郭敬辉, 等. 晋冀内蒙交界地区麻粒岩地体中两条花岗岩带及其对早前寒武纪地壳生长的意义[J]. 岩石学报, 1996, 12(2): 299-314. |
[77] |
HE H L, WANG Y Q, BAO Z A, et al. Role of magma injection and mixing in the formation of chromitite in Archean anorthosites: evidence from the Sittampundi Complex, southern India[J]. Precambrian Research, 2020, 350: 105914.
DOI URL |
[78] |
BRANDT S, RAITH M M, SCHENK V, et al. Crustal evolution of the southern Granulite Terrane, South India: new geochronological and geochemical data for felsic orthogneisses and granites[J]. Precambrian Research, 2014, 246: 91-122.
DOI URL |
[79] | HE H L, WANG Y Q, GEORGE, P M, et al. Formation of -2.5 Ga Sittampundi anorthosite complex in southern India: implications to lower crustal stabilization of Dharwar Craton[J]. Precambrian Research, 2021, Lithos, 380/381: 105836. |
[80] | 翟明国, 樊棋诚, 张宏福, 等. 华北东部岩石圈减薄作用中的下地壳过程: 岩浆底侵、置换与拆沉作用[J]. 岩石学报, 2005, 21(6): 1509-1526. |
[81] | FAN W M, MENZIES M A. Destruction of aged lower lithosphere and asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-179. |
[82] |
GAO S, RUDNICK R L, CARLSON R W. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198: 307-322.
DOI URL |
[83] |
ZHANG H F, MIN S, ZHOU X H et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J]. Lithos, 2005, 81: 297-317.
DOI URL |
[84] | 樊祺诚, 张宏福, 隋建立, 等. 岩浆底侵作用与汉诺坝现今壳-幔边界组成[J]. 中国科学D辑: 地球科学, 2005, 35: 1-14. |
[85] | 钱祥麟. 早期大陆地壳研究的意义和问题[M]//钱祥麟, 王仁民. 华北北部麻粒岩相带地质演化. 北京: 地震出版社, 1994: 1-6. |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | ZHANG Jinjiang, ZHENG Jianlei, WANG Haibin, GUO Lei, LIU Jiang, QI Guowei. Late Mesozoic-Early Cenozoic tectonic events in Daqingshan and Panyangshan, Inner Mongolia, and its implication for the tectonic evolution of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2024, 31(1): 127-141. |
[3] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[4] | DENG Yan, XU Yuchao, FAN Ye, SUN Guicheng, DONG Zeyi, HAN Bing. Application of the magnetotelluric method in the Sichuan-Yunnan region—a review [J]. Earth Science Frontiers, 2024, 31(1): 181-200. |
[5] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[6] | WAN Yusheng, DONG Chunyan, XIE Hangqiang, LI Pengchuan, LIU Shoujie, LI Yuan, WANG Yuqing, WANG Kunli, LIU Dunyi. Neoarchean magmatism in the North China Craton: Implication for tectonic regimes and cratonization [J]. Earth Science Frontiers, 2024, 31(1): 77-94. |
[7] | WEI Chunjing, ZHAO Yanan, CHU Hang. Multi-phase metamorphism in the Hongqiying Complex, northern Hebei: Records of Paleoproterozoic subduction/collision, late Paleozoic extension and early Mesozoic compression events [J]. Earth Science Frontiers, 2024, 31(1): 95-110. |
[8] | YANG Liqiang, HE Wenyan, GAO Xue, WANG Sirui, LI Nan, QIU Kunfeng, ZHANG Liang, MA Qiang, SU Yuping, LI Dapeng, ZHANG Zhiyu, YU Hong. New method to trace the three-dimensional compositional structure of cratonic lithosphere [J]. Earth Science Frontiers, 2023, 30(6): 391-405. |
[9] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[10] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[11] | YE Tao, NIU Chengmin, WANG Deying, WANG Qingbin, DAI Liming, CHEN Anqing. Mesozoic tectonic evolution of the southwestern Bohai Sea and its dynamic mechanism: Implications for the destruction of the North China Craton [J]. Earth Science Frontiers, 2022, 29(5): 133-146. |
[12] | ZENG Zhongcheng, HONG Zenglin, BIAN Xiaowei, CHEN Ning, ZHANG Ruoyu, LI Qi. Discovery of Late Ordovician sanukitoid-like diorite in southern Altyn orogeny and its geological significance [J]. Earth Science Frontiers, 2022, 29(4): 345-357. |
[13] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[14] | WAN Yusheng, DONG Chunyan, LI Pengchuan, MIAO Peisen, WANG Huichu, LI Jianrong. Formation age of the Gaofan Group in Wutai area: New evidence from SHRIMP U-Pb zircon dating [J]. Earth Science Frontiers, 2022, 29(2): 45-55. |
[15] | LI Xiaobo, ZHANG Yan, TONG Yabo. Preliminary analysis on the paleogeography and paleoenvironment in the eastern Yanliao area during the Jurassic-Cretaceous tectonic transition [J]. Earth Science Frontiers, 2021, 28(2): 391-411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||