Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 345-357.DOI: 10.13745/j.esf.sf.2021.10.29
Previous Articles Next Articles
ZENG Zhongcheng1,2,3(), HONG Zenglin2,3,4,*(
), BIAN Xiaowei3, CHEN Ning3, ZHANG Ruoyu3, LI Qi3
Received:
2020-11-02
Revised:
2021-09-20
Online:
2022-07-25
Published:
2022-07-28
Contact:
HONG Zenglin
CLC Number:
ZENG Zhongcheng, HONG Zenglin, BIAN Xiaowei, CHEN Ning, ZHANG Ruoyu, LI Qi. Discovery of Late Ordovician sanukitoid-like diorite in southern Altyn orogeny and its geological significance[J]. Earth Science Frontiers, 2022, 29(4): 345-357.
Fig.1 (a) Tectonic map of the Altyn Tagh; (b) Sketch geological map of the study area. TRB-Tarim Basin;QL-Qilian Mountains;QDB-Qaidam Basin;WKL-Western Kunlun Mountains;EKL-Eastern Kunlun Mountains;HMLY-Himalaya Mountains;INP-Indian Plate;Ⅰ-North Altyn Tagh Archean complex;Ⅱ-North Altyn Tagh subduction-collision complex;Q-Quaternary;N1y-Neogene Youshashan Formation;J1-2dm-Jurassic Dameigou Formation; OMm -Ordovician Mengya ophiolite melange;QbS-Qingbaikou system Suorkuli group;Pt1A-Palaeoproterozoic Altyn Tagh rock group;γδ(O3-S1)-Yusupualeke Tagh plutons;δ(O3-S1)-Late Ordovician-Early Silurian diorite; O2-3-Paxialayidang plutons; νQb -amphibolite; γQb-gneissic granite; γδQb -Gailike plutons; γδοQb-Yaganbuyang syenogranite; O∑H-ultrabasic rock block.
样品 点号 | wB/10-6 | Th/U | 207Pb/206Pb | ±1σ | 207Pb/235U | ±1σ | 206Pb/238U | ±1σ | t207/206/ Ma | ±1σ | t207/235/ Ma | ±1σ | t206/238/ Ma | ±1σ | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | ||||||||||||||||
1 | 299 | 779 | 0.38 | 0.055 67 | 0.001 74 | 0.551 58 | 0.010 21 | 0.071 85 | 0.001 18 | 439 | 68 | 446 | 7 | 447 | 7 | ||
2 | 81 | 144 | 0.56 | 0.058 09 | 0.002 28 | 0.576 09 | 0.017 18 | 0.071 91 | 0.001 25 | 533 | 84 | 462 | 11 | 448 | 8 | ||
3 | 5 455 | 3 736 | 1.46 | 0.058 00 | 0.001 77 | 0.576 00 | 0.010 03 | 0.072 01 | 0.001 18 | 529 | 66 | 462 | 6 | 448 | 7 | ||
4 | 680 | 910 | 0.75 | 0.057 94 | 0.002 33 | 0.570 47 | 0.017 65 | 0.071 39 | 0.001 27 | 527 | 86 | 458 | 11 | 445 | 8 | ||
5 | 243 | 557 | 0.44 | 0.057 31 | 0.001 88 | 0.566 08 | 0.011 91 | 0.071 62 | 0.001 19 | 503 | 71 | 456 | 8 | 446 | 7 | ||
6 | 908 | 1 577 | 0.58 | 0.055 70 | 0.001 75 | 0.553 66 | 0.010 46 | 0.072 07 | 0.001 19 | 440 | 68 | 447 | 7 | 449 | 7 | ||
7 | 494 | 768 | 0.64 | 0.056 24 | 0.001 78 | 0.555 85 | 0.010 74 | 0.071 66 | 0.001 19 | 461 | 69 | 449 | 7 | 446 | 7 | ||
8 | 220 | 565 | 0.39 | 0.057 63 | 0.001 84 | 0.569 50 | 0.011 18 | 0.071 66 | 0.001 19 | 515 | 69 | 458 | 7 | 446 | 7 | ||
9 | 235 | 581 | 0.4 | 0.056 82 | 0.002 35 | 0.554 83 | 0.018 06 | 0.070 81 | 0.001 27 | 484 | 90 | 448 | 12 | 441 | 8 | ||
10 | 433 | 597 | 0.73 | 0.056 02 | 0.001 79 | 0.551 28 | 0.010 83 | 0.071 35 | 0.001 18 | 453 | 69 | 446 | 7 | 444 | 7 | ||
11 | 3 943 | 2 839 | 1.39 | 0.055 79 | 0.001 70 | 0.544 87 | 0.009 43 | 0.070 81 | 0.001 16 | 444 | 66 | 442 | 6 | 441 | 7 | ||
12 | 271 | 843 | 0.32 | 0.056 66 | 0.001 76 | 0.559 03 | 0.010 34 | 0.071 55 | 0.001 18 | 478 | 68 | 451 | 7 | 446 | 7 | ||
13 | 346 | 893 | 0.39 | 0.056 28 | 0.001 75 | 0.555 35 | 0.010 18 | 0.071 56 | 0.001 18 | 463 | 68 | 449 | 7 | 446 | 7 | ||
14 | 176 | 577 | 0.31 | 0.056 02 | 0.001 78 | 0.549 29 | 0.010 75 | 0.071 10 | 0.001 18 | 453 | 69 | 445 | 7 | 443 | 7 | ||
15 | 280 | 346 | 0.81 | 0.058 08 | 0.002 35 | 0.568 79 | 0.017 88 | 0.071 01 | 0.001 27 | 532 | 87 | 457 | 12 | 442 | 8 | ||
16 | 446 | 155 | 2.88 | 0.057 91 | 0.002 18 | 0.568 42 | 0.015 78 | 0.071 18 | 0.001 24 | 526 | 81 | 457 | 10 | 443 | 7 | ||
17 | 708 | 670 | 1.06 | 0.056 65 | 0.001 96 | 0.562 92 | 0.013 37 | 0.072 06 | 0.001 23 | 477 | 75 | 453 | 9 | 449 | 7 | ||
18 | 426 | 541 | 0.79 | 0.056 63 | 0.001 84 | 0.557 11 | 0.011 46 | 0.071 33 | 0.001 20 | 477 | 71 | 450 | 7 | 444 | 7 | ||
19 | 387 | 652 | 0.59 | 0.056 41 | 0.001 77 | 0.560 47 | 0.010 71 | 0.072 05 | 0.001 20 | 468 | 68 | 452 | 7 | 449 | 7 | ||
20 | 4 223 | 3 360 | 1.26 | 0.056 23 | 0.001 75 | 0.560 56 | 0.010 40 | 0.072 29 | 0.001 20 | 461 | 68 | 452 | 7 | 450 | 7 | ||
21 | 459 | 592 | 0.78 | 0.058 09 | 0.002 21 | 0.576 42 | 0.016 30 | 0.071 96 | 0.001 27 | 533 | 82 | 462 | 11 | 448 | 8 | ||
22 | 451 | 657 | 0.69 | 0.057 28 | 0.001 83 | 0.564 99 | 0.011 20 | 0.071 52 | 0.001 20 | 502 | 69 | 455 | 7 | 445 | 7 | ||
23 | 649 | 948 | 0.68 | 0.057 56 | 0.001 80 | 0.565 63 | 0.010 63 | 0.071 26 | 0.001 19 | 513 | 68 | 455 | 7 | 444 | 7 | ||
24 | 2 251 | 1 300 | 1.73 | 0.060 62 | 0.002 22 | 0.595 40 | 0.015 74 | 0.071 22 | 0.001 24 | 626 | 77 | 474 | 10 | 444 | 7 |
Table 1 Zircon LA-ICP-MS U-Pb isotopic analysis of the diorite (sample PM022/19-1)
样品 点号 | wB/10-6 | Th/U | 207Pb/206Pb | ±1σ | 207Pb/235U | ±1σ | 206Pb/238U | ±1σ | t207/206/ Ma | ±1σ | t207/235/ Ma | ±1σ | t206/238/ Ma | ±1σ | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | ||||||||||||||||
1 | 299 | 779 | 0.38 | 0.055 67 | 0.001 74 | 0.551 58 | 0.010 21 | 0.071 85 | 0.001 18 | 439 | 68 | 446 | 7 | 447 | 7 | ||
2 | 81 | 144 | 0.56 | 0.058 09 | 0.002 28 | 0.576 09 | 0.017 18 | 0.071 91 | 0.001 25 | 533 | 84 | 462 | 11 | 448 | 8 | ||
3 | 5 455 | 3 736 | 1.46 | 0.058 00 | 0.001 77 | 0.576 00 | 0.010 03 | 0.072 01 | 0.001 18 | 529 | 66 | 462 | 6 | 448 | 7 | ||
4 | 680 | 910 | 0.75 | 0.057 94 | 0.002 33 | 0.570 47 | 0.017 65 | 0.071 39 | 0.001 27 | 527 | 86 | 458 | 11 | 445 | 8 | ||
5 | 243 | 557 | 0.44 | 0.057 31 | 0.001 88 | 0.566 08 | 0.011 91 | 0.071 62 | 0.001 19 | 503 | 71 | 456 | 8 | 446 | 7 | ||
6 | 908 | 1 577 | 0.58 | 0.055 70 | 0.001 75 | 0.553 66 | 0.010 46 | 0.072 07 | 0.001 19 | 440 | 68 | 447 | 7 | 449 | 7 | ||
7 | 494 | 768 | 0.64 | 0.056 24 | 0.001 78 | 0.555 85 | 0.010 74 | 0.071 66 | 0.001 19 | 461 | 69 | 449 | 7 | 446 | 7 | ||
8 | 220 | 565 | 0.39 | 0.057 63 | 0.001 84 | 0.569 50 | 0.011 18 | 0.071 66 | 0.001 19 | 515 | 69 | 458 | 7 | 446 | 7 | ||
9 | 235 | 581 | 0.4 | 0.056 82 | 0.002 35 | 0.554 83 | 0.018 06 | 0.070 81 | 0.001 27 | 484 | 90 | 448 | 12 | 441 | 8 | ||
10 | 433 | 597 | 0.73 | 0.056 02 | 0.001 79 | 0.551 28 | 0.010 83 | 0.071 35 | 0.001 18 | 453 | 69 | 446 | 7 | 444 | 7 | ||
11 | 3 943 | 2 839 | 1.39 | 0.055 79 | 0.001 70 | 0.544 87 | 0.009 43 | 0.070 81 | 0.001 16 | 444 | 66 | 442 | 6 | 441 | 7 | ||
12 | 271 | 843 | 0.32 | 0.056 66 | 0.001 76 | 0.559 03 | 0.010 34 | 0.071 55 | 0.001 18 | 478 | 68 | 451 | 7 | 446 | 7 | ||
13 | 346 | 893 | 0.39 | 0.056 28 | 0.001 75 | 0.555 35 | 0.010 18 | 0.071 56 | 0.001 18 | 463 | 68 | 449 | 7 | 446 | 7 | ||
14 | 176 | 577 | 0.31 | 0.056 02 | 0.001 78 | 0.549 29 | 0.010 75 | 0.071 10 | 0.001 18 | 453 | 69 | 445 | 7 | 443 | 7 | ||
15 | 280 | 346 | 0.81 | 0.058 08 | 0.002 35 | 0.568 79 | 0.017 88 | 0.071 01 | 0.001 27 | 532 | 87 | 457 | 12 | 442 | 8 | ||
16 | 446 | 155 | 2.88 | 0.057 91 | 0.002 18 | 0.568 42 | 0.015 78 | 0.071 18 | 0.001 24 | 526 | 81 | 457 | 10 | 443 | 7 | ||
17 | 708 | 670 | 1.06 | 0.056 65 | 0.001 96 | 0.562 92 | 0.013 37 | 0.072 06 | 0.001 23 | 477 | 75 | 453 | 9 | 449 | 7 | ||
18 | 426 | 541 | 0.79 | 0.056 63 | 0.001 84 | 0.557 11 | 0.011 46 | 0.071 33 | 0.001 20 | 477 | 71 | 450 | 7 | 444 | 7 | ||
19 | 387 | 652 | 0.59 | 0.056 41 | 0.001 77 | 0.560 47 | 0.010 71 | 0.072 05 | 0.001 20 | 468 | 68 | 452 | 7 | 449 | 7 | ||
20 | 4 223 | 3 360 | 1.26 | 0.056 23 | 0.001 75 | 0.560 56 | 0.010 40 | 0.072 29 | 0.001 20 | 461 | 68 | 452 | 7 | 450 | 7 | ||
21 | 459 | 592 | 0.78 | 0.058 09 | 0.002 21 | 0.576 42 | 0.016 30 | 0.071 96 | 0.001 27 | 533 | 82 | 462 | 11 | 448 | 8 | ||
22 | 451 | 657 | 0.69 | 0.057 28 | 0.001 83 | 0.564 99 | 0.011 20 | 0.071 52 | 0.001 20 | 502 | 69 | 455 | 7 | 445 | 7 | ||
23 | 649 | 948 | 0.68 | 0.057 56 | 0.001 80 | 0.565 63 | 0.010 63 | 0.071 26 | 0.001 19 | 513 | 68 | 455 | 7 | 444 | 7 | ||
24 | 2 251 | 1 300 | 1.73 | 0.060 62 | 0.002 22 | 0.595 40 | 0.015 74 | 0.071 22 | 0.001 24 | 626 | 77 | 474 | 10 | 444 | 7 |
样品号 | wB/10-2 | Mg# | A/NK | A/CNK | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | 烧失量 | 总和 | ||||
PM022/19-1 | 54.97 | 1.17 | 15.23 | 3.93 | 4.72 | 0.14 | 5.11 | 6.69 | 2.29 | 2.67 | 0.36 | 1.72 | 99.00 | 52.44 | 2.29 | 0.81 |
PM022/19-2 | 54.90 | 1.19 | 15.30 | 4.00 | 4.74 | 0.14 | 5.29 | 6.72 | 2.24 | 2.36 | 0.38 | 1.81 | 99.07 | 53.06 | 2.45 | 0.83 |
PM022/19-3 | 54.95 | 1.17 | 15.32 | 3.05 | 5.54 | 0.14 | 5.06 | 6.46 | 2.38 | 2.50 | 0.38 | 2.01 | 98.96 | 52.12 | 2.31 | 0.83 |
PM022/19-4 | 54.83 | 1.17 | 15.34 | 2.52 | 5.90 | 0.14 | 5.17 | 6.72 | 2.26 | 2.45 | 0.38 | 2.02 | 98.90 | 53.01 | 2.41 | 0.83 |
PM022/19-5 | 54.52 | 1.17 | 15.11 | 2.80 | 5.82 | 0.14 | 5.14 | 6.74 | 2.40 | 2.55 | 0.37 | 2.11 | 98.87 | 52.34 | 2.25 | 0.80 |
D8834/2 | 55.20 | 1.30 | 16.19 | 2.97 | 5.31 | 0.15 | 3.93 | 6.59 | 3.34 | 1.68 | 0.45 | 2.07 | 99.18 | 46.74 | 2.21 | 0.84 |
样品号 | wB/10-6 | |||||||||||||||
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | ∑REE | |
PM022/19-1 | 32.0 | 63.9 | 8.05 | 30.90 | 7.03 | 2.06 | 6.06 | 0.90 | 4.70 | 1.02 | 2.65 | 0.44 | 2.36 | 0.42 | 26.4 | 188.89 |
PM022/19-2 | 36.0 | 71.7 | 8.92 | 36.00 | 7.80 | 2.12 | 7.28 | 0.94 | 5.15 | 1.15 | 3.08 | 0.57 | 2.77 | 0.45 | 30.1 | 214.03 |
PM022/19-3 | 40.4 | 70.2 | 10.10 | 39.40 | 8.77 | 2.31 | 7.56 | 1.07 | 5.89 | 1.22 | 3.14 | 0.56 | 2.67 | 0.54 | 31.3 | 225.13 |
PM022/19-4 | 34.8 | 69.4 | 8.82 | 36.00 | 7.94 | 2.22 | 7.36 | 1.01 | 5.41 | 1.17 | 3.20 | 0.54 | 2.85 | 0.54 | 29.5 | 210.76 |
PM022/19-5 | 31.8 | 65.6 | 8.43 | 34.40 | 7.44 | 2.14 | 6.65 | 0.98 | 5.20 | 1.03 | 2.88 | 0.49 | 2.44 | 0.44 | 27.7 | 197.62 |
D8834/2 | 62.7 | 123.0 | 148.00 | 55.65 | 9.75 | 2.71 | 8.38 | 1.14 | 5.28 | 1.15 | 3.05 | 0.55 | 2.65 | 0.47 | 29.9 | 454.38 |
样品号 | wB/10-6 | Ti/Zr | Nb/Ta | |||||||||||||
Ti | Pb | Ni | Cr | Ga | Sr | Ba | Rb | Nb | Ta | Zr | Hf | U | Th | |||
PM022/19-1 | 7 560 | 37.3 | 41.1 | 135.9 | 19.7 | 547.1 | 901.2 | 85.7 | 15.8 | 1.85 | 140.4 | 1.94 | 2.73 | 13.8 | 54 | 8.54 |
PM022/19-2 | 8 014 | 34.3 | 44.8 | 139.2 | 18.7 | 537.6 | 910.0 | 84.0 | 20.5 | 2.09 | 134.5 | 2.08 | 3.30 | 12.9 | 60 | 9.81 |
PM022/19-3 | 8 043 | 35.3 | 42.0 | 138.6 | 19.3 | 513.3 | 866.6 | 86.7 | 20.7 | 2.28 | 135.1 | 2.27 | 2.90 | 13.0 | 60 | 9.08 |
PM022/19-4 | 8 163 | 38.4 | 43.5 | 140.1 | 18.9 | 526.1 | 935.7 | 84.0 | 19.7 | 2.79 | 136.6 | 2.84 | 3.36 | 12.2 | 60 | 7.06 |
PM022/19-5 | 7 644 | 32.2 | 40.4 | 137.0 | 18.0 | 529.9 | 899.2 | 81.3 | 12.4 | 2.50 | 131.3 | 2.64 | 2.97 | 10.9 | 58 | 4.96 |
D8834/2 | 8 713 | 25.5 | 27.1 | 29.3 | 21.9 | 734.0 | 606.0 | 64.7 | 23.9 | 2.31 | 180.0 | 2.37 | 3.17 | 12.5 | 48 | 10.35 |
Table 2 Major element and trace element from the diorite in the Late Ordovician
样品号 | wB/10-2 | Mg# | A/NK | A/CNK | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | 烧失量 | 总和 | ||||
PM022/19-1 | 54.97 | 1.17 | 15.23 | 3.93 | 4.72 | 0.14 | 5.11 | 6.69 | 2.29 | 2.67 | 0.36 | 1.72 | 99.00 | 52.44 | 2.29 | 0.81 |
PM022/19-2 | 54.90 | 1.19 | 15.30 | 4.00 | 4.74 | 0.14 | 5.29 | 6.72 | 2.24 | 2.36 | 0.38 | 1.81 | 99.07 | 53.06 | 2.45 | 0.83 |
PM022/19-3 | 54.95 | 1.17 | 15.32 | 3.05 | 5.54 | 0.14 | 5.06 | 6.46 | 2.38 | 2.50 | 0.38 | 2.01 | 98.96 | 52.12 | 2.31 | 0.83 |
PM022/19-4 | 54.83 | 1.17 | 15.34 | 2.52 | 5.90 | 0.14 | 5.17 | 6.72 | 2.26 | 2.45 | 0.38 | 2.02 | 98.90 | 53.01 | 2.41 | 0.83 |
PM022/19-5 | 54.52 | 1.17 | 15.11 | 2.80 | 5.82 | 0.14 | 5.14 | 6.74 | 2.40 | 2.55 | 0.37 | 2.11 | 98.87 | 52.34 | 2.25 | 0.80 |
D8834/2 | 55.20 | 1.30 | 16.19 | 2.97 | 5.31 | 0.15 | 3.93 | 6.59 | 3.34 | 1.68 | 0.45 | 2.07 | 99.18 | 46.74 | 2.21 | 0.84 |
样品号 | wB/10-6 | |||||||||||||||
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | ∑REE | |
PM022/19-1 | 32.0 | 63.9 | 8.05 | 30.90 | 7.03 | 2.06 | 6.06 | 0.90 | 4.70 | 1.02 | 2.65 | 0.44 | 2.36 | 0.42 | 26.4 | 188.89 |
PM022/19-2 | 36.0 | 71.7 | 8.92 | 36.00 | 7.80 | 2.12 | 7.28 | 0.94 | 5.15 | 1.15 | 3.08 | 0.57 | 2.77 | 0.45 | 30.1 | 214.03 |
PM022/19-3 | 40.4 | 70.2 | 10.10 | 39.40 | 8.77 | 2.31 | 7.56 | 1.07 | 5.89 | 1.22 | 3.14 | 0.56 | 2.67 | 0.54 | 31.3 | 225.13 |
PM022/19-4 | 34.8 | 69.4 | 8.82 | 36.00 | 7.94 | 2.22 | 7.36 | 1.01 | 5.41 | 1.17 | 3.20 | 0.54 | 2.85 | 0.54 | 29.5 | 210.76 |
PM022/19-5 | 31.8 | 65.6 | 8.43 | 34.40 | 7.44 | 2.14 | 6.65 | 0.98 | 5.20 | 1.03 | 2.88 | 0.49 | 2.44 | 0.44 | 27.7 | 197.62 |
D8834/2 | 62.7 | 123.0 | 148.00 | 55.65 | 9.75 | 2.71 | 8.38 | 1.14 | 5.28 | 1.15 | 3.05 | 0.55 | 2.65 | 0.47 | 29.9 | 454.38 |
样品号 | wB/10-6 | Ti/Zr | Nb/Ta | |||||||||||||
Ti | Pb | Ni | Cr | Ga | Sr | Ba | Rb | Nb | Ta | Zr | Hf | U | Th | |||
PM022/19-1 | 7 560 | 37.3 | 41.1 | 135.9 | 19.7 | 547.1 | 901.2 | 85.7 | 15.8 | 1.85 | 140.4 | 1.94 | 2.73 | 13.8 | 54 | 8.54 |
PM022/19-2 | 8 014 | 34.3 | 44.8 | 139.2 | 18.7 | 537.6 | 910.0 | 84.0 | 20.5 | 2.09 | 134.5 | 2.08 | 3.30 | 12.9 | 60 | 9.81 |
PM022/19-3 | 8 043 | 35.3 | 42.0 | 138.6 | 19.3 | 513.3 | 866.6 | 86.7 | 20.7 | 2.28 | 135.1 | 2.27 | 2.90 | 13.0 | 60 | 9.08 |
PM022/19-4 | 8 163 | 38.4 | 43.5 | 140.1 | 18.9 | 526.1 | 935.7 | 84.0 | 19.7 | 2.79 | 136.6 | 2.84 | 3.36 | 12.2 | 60 | 7.06 |
PM022/19-5 | 7 644 | 32.2 | 40.4 | 137.0 | 18.0 | 529.9 | 899.2 | 81.3 | 12.4 | 2.50 | 131.3 | 2.64 | 2.97 | 10.9 | 58 | 4.96 |
D8834/2 | 8 713 | 25.5 | 27.1 | 29.3 | 21.9 | 734.0 | 606.0 | 64.7 | 23.9 | 2.31 | 180.0 | 2.37 | 3.17 | 12.5 | 48 | 10.35 |
Fig.5 TAS classification and nomenclature (a)[25], A/NK vs. A/CNK (b), SiO2 vs. K2O (c)[26], and SiO2 vs. MgO (d)diagrams for the Late Ordovician diorites. Data of the sanukitoids in Setouchi are from [27-28]
Fig.6 Chondrite-normalized REE distribution diagram (a) and primitive mantle-normalized trace element diagram (b) of the Late Ordovician diorite. Normalization values from [29].
Fig.7 Comparative diagrams for the Late Ordovician diorites in the southern Altyn orogeny and typical sanukitoids.(a) (La/Yb)N vs. YbN diagram[36]; (b) Sr/Y vs. Y diagram[37]; (c) (FeOT+MgO +MnO+TiO2) vs. SiO2 diagram[40]; and (d) TiO2 vs. MgO diagram[41].
Fig.8 (Hf/Sm)N vs. (Ta/La)N (a) and Th/Yb vs. Ba/La (b) diagrams for the Late Ordovician diorites in the southern Altyn orogeny.MORB, OIB and mantle values from [29].
Fig.9 Tectonic diagrams for the Late Ordovician diorites in the southern Altyn orogeny and typical sanukitoids.(a) Hf vs. Rb/10 vs. 3Ta diagram[47]; (b) Hf vs. Rb/30 vs. 3Ta diagram[47];(c) Rb vs. (Yb+Nb) diagram[48]; and (d) Nb vs. Y diagram[48].
[1] | 刘良, 车自成, 王焰. 阿尔金高压变质岩带的特征及其构造意义[J]. 岩石学报, 1999(1): 57-64. |
[2] | 校培喜, 高晓峰, 康磊, 等. 阿尔金—东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014. |
[3] | 崔军文, 唐哲明, 邓晋福, 等. 阿尔金断裂系[M]. 北京: 地质出版社, 1999. |
[4] | 孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义[J]. 地质学报, 2012, 86(2): 247-257. |
[5] | LIU L, ZHANG J F, CAO Y T, et al. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China[J]. Earth and Planetary Science Letters, 2018, 484: 353-362. |
[6] | WANG C, LIU L, XIAO P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 2014, 202/203: 1-20. |
[7] | LI Y S, ZHANG J X, YU S Y, et al. Origin of Early Paleozoic garnet peridotite and associated garnet pyroxenite in the South Altyn Tagh, NW China: constraints from geochemistry, SHRIMP U-Pb zircon dating and Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60-77. |
[8] | 毕政家, 曾忠诚, 张昆昆, 等. 阿尔金南缘帕夏拉依档沟斜长角闪岩年代学、地球化学及其构造意义[J]. 中国地质, 2016, 43(4): 1149-1164. |
[9] | 李琦, 曾忠诚, 陈宁, 等. 阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 642-654. |
[10] | 李琦, 曾忠诚, 陈宁, 等. 阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J]. 现代地质, 2015, 29(6): 1271-1283. |
[11] | 赵江林, 曾忠诚, 陈宁, 等. 阿尔金南缘玉苏普阿勒克塔格北侧冰沟南组变质火山岩地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 655-668. |
[12] | 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(3): 193-205. |
[13] | 李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008. |
[14] | 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28. |
[15] | 刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(8): 1126-1137. |
[16] | LIU L, WANG C, CAO Y T, et al. Geochronology of multi-stage metamorphic events: constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136/137/138/139: 10-26. |
[17] | 康磊. 南阿尔金高压-超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2015: 129. |
[18] | 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271. |
[19] | 康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(9): 3039-3048. |
[20] | 吴才来, 郜源红, 雷敏, 等. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J]. 岩石学报, 2014, 30(8): 2297-2323. |
[21] | 张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中—晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(4): 545-558. |
[22] | 高栋, 吴才来, 郜源红, 等. 南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb 年代学、地球化学特征及地质意义[J]. 地球科学, 2019, 44(11): 3812-3828. |
[23] | YUAN H L, WU F Y, GAO S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin, 2003, 48(22): 2411-2421 |
[24] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[25] | MIDDLEMOST E. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. |
[26] | PECCERILLO A, TAYLOR S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. |
[27] | TATSUMI Y, SHUKUNO H, SATO K, et al. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi volcanic belt, SW Japan[J]. Journal of Petrology, 2003, 44(9): 1561-1578. |
[28] | TATSUMI Y. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation?[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 467-499. |
[29] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. |
[30] | 张旗, 钱青, 翟明国, 等. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J]. 岩石矿物学杂志, 2005, 24(2): 117-125. |
[31] | 吴才来, 杨经绥, 姚尚志, 等. 北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年[J]. 岩石学报, 2005, 21(3): 846-858. |
[32] | WU C L, YANG J S, ROBINSON P T, et al. Geochemistry, age and tectonic significance of granitic rocks in North Altun, Northwest China[J]. Lithos, 2009, 113(3/4): 423-436. |
[33] | YU S Y, ZHANG J X, LI S Z, et al. Continuity of the North Qilian and North Altun orogenic belts of NW China: evidence from newly discovered Palaeozoic low-Mg and high-Mg adakitic rocks[J]. Geological Magazine, 2018, 155(8): 1684-1704. |
[34] | 郑坤, 吴才来, 魏春景, 等. 北阿尔金西段正长花岗岩和闪长岩地球化学、锆石U-Pb 定年及Hf 同位素特征[J]. 岩石学报, 2019, 35(2): 541-557. |
[35] | 杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150. |
[36] | DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662. |
[37] | KAMEIA A, OWADAB M, NAGAOC T, et al. High-Mg diorites derived from sanukitic Hma magmas, Kyushu Island, Southwest Japan arc: evidence from clinopyroxene and whole rock compositions[J]. Lithos, 2004, 75(3/4): 359-371. |
[38] | HEILIMO E, HALLA J, HÖLTTÄ P. Discrimination and origin of the sanukitoid series: geochemical Constraints from the Neoarchean Western Karelian Province(Finland)[J]. Lithos, 2010, 115(1/2/3/4): 27-39. |
[39] | CHIARADIA M, MÜNTENER O, BEATE B. Quaternary sanukitoid-like andesites generated by intracrustal processes(Chacana Caldera Complex, Ecuador): implications for Archean sanukitoids[J]. Journal of Petrology, 2014, 55(4): 769-802. |
[40] | LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of Late-Archean granitoids: evidence for the onset of “Modern-Style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205: 208-235. |
[41] | MARTIN H, MOYEN J, RAPP R. The sanukitoid series: magmatism at the Archaean-Proterozoic transition[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 100(1/2): 15-33. |
[42] | RAPP R P, WATSON E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. |
[43] | RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. The crust:treatise on geochemistry. Oxford: Elsevier-Pergamon, 2003, 3: 1-64. |
[44] | STERN R A, HANSON G N, SHIREY S B. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in Southwestern Superior Province[J]. Canadian Journal of Earth Sciences, 1989, 26(9): 1688-1712. |
[45] | JONES J H, WALKER D, PICKETT D A, et al. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1307-1320. |
[46] | LA FLÈCHE M R, CAMIRÉ G, JENNER G A. Geochemistry of Post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada[J]. Chemical Geology, 1998, 148(3/4): 115-136. |
[47] | HARRIS N B W, PEARCE J A, TENDLE A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society, London, Special Publications, 1986, 19: 67-81. |
[48] | PEARCE J A, HARRIS N B, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. |
[49] | 吴才来, 姚尚志, 曾令森, 等. 北阿尔金巴什考供—斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb 定年[J]. 中国科学: D 辑, 2007, 37(1): 10-26. |
[50] | 董洪凯, 郭金城, 陈海燕, 等. 新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J]. 西北地质, 2014, 47(4): 73-87. |
[51] | 马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义: 岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(4): 793-804. |
[52] | 马中平, 李向民, 徐学义, 等. 南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J]. 中国地质, 2011, 38(4): 1071-1078. |
[53] | 曾忠诚, 边小卫, 赵江林, 等. 阿尔金南缘冰沟南组火山岩锆石U-Pb 年龄及其前寒武纪构造演化意义[J]. 地质论评, 2019, 65(1): 103-118. |
[54] | 康磊, 校培喜, 高晓峰, 等. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质学报, 2016, 90(10): 2527-255. |
[55] | 徐楠, 吴才来, 郑坤, 等. 南阿尔金茫崖A型花岗岩的成因及构造意义[J]. 地质学报, 2020, 94(5): 1431-1449. |
[1] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[2] | WANG Wenlu, LI Xiaowei, ZHANG Zeming, TIAN Zuolin, LI Zengsheng, SUN Yuqin, LIU Qiang, DING Huixia, HAO Zhaoge. Genetic mineralogy of Late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, southern Tibet—construction of a trans-crustal magma system [J]. Earth Science Frontiers, 2023, 30(2): 183-214. |
[3] | WANG Bingzhang, PAN Tong, REN Haidong, WANG Tao, ZHAO Zhiyi, FENG Jianping, ZHANG Jinming. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area [J]. Earth Science Frontiers, 2021, 28(1): 318-333. |
[4] | DONG Yang, LIU Jingdang, LIU Jin, DOU Shiyong, LIU Su, ZHANG Yanfei, LIANG Shuai, YANG Peiqi, LIANG Tianyi. Geological characteristics and tectonic significance of Carboniferous adakite-like granite in the Boketu area of eastern Inner Mongolia [J]. Earth Science Frontiers, 2020, 27(4): 135-149. |
[5] | LI Yongsheng, ZHEN Shimin, YU Xiaofei, GONG Fanying, DU Zezhong. Zircon U-Pb geochronology and Hf isotopic compositions of igneous rocks from the Shuikoushan Pb-Zn deposit, Hunan Province, and their geological significance [J]. Earth Science Frontiers, 2020, 27(2): 332-352. |
[6] | WANG Jian,WEI Qirong,CI Qiong,ZHENG Qiuping,WANG Xudong,JI Xuefeng,XU Huan. Geochronology, rock geochemistry and tectonic setting of intermediate-acid intrusive rocks from the Jigongcun molybdenum mining area, Tibet. [J]. Earth Science Frontiers, 2018, 25(6): 152-164. |
[7] | DONG Pengsheng,DONG Guochen,SUN Zhuanrong,LI Huawei,WANG Shushu,WANG Weiqing,GENG Jianzhen. Zircon U-Pb chronology, Hf isotopic compositions, geochemistry characteristics and geological significance of Shouwangfen complex in Yanshan region. [J]. Earth Science Frontiers, 2018, 25(6): 264-276. |
[8] | MA Hongwen,YANG Jing,ZHANG Pan,LIU Changjiang,SU Shuangqing,YAO Wengui,LUO Zheng,LIU Meitang,YIN Congcong,CHEN Jian,. Potassic syenite resource in China and reaction mechanism of potash salt processing by hydrothermal alkaline digestion [J]. Earth Science Frontiers, 2018, 25(5): 277-285. |
[9] | . [J]. Earth Science Frontiers, 2017, 24(6): 68-79. |
[10] | . Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam. [J]. Earth Science Frontiers, 2016, 23(2): 206-221. |
[11] | . A study of mineral composition and microtexture of the mafic microgranular enclave in granites in SE China. [J]. Earth Science Frontiers, 2011, 18(1): 63-73. |
[12] | . Genesis of mafic microgranular enclaves in granites in SE China. [J]. Earth Science Frontiers, 2011, 18(1): 74-81. |
[13] | . Genesis of mafic microgranular enclaves in granites in SE China. [J]. Earth Science Frontiers, 2011, 18(1): 82-88. |
[14] | LIU Min SHU Di-Cheng DIAO Zhi-Dan WANG Li-Quan MO Xuan-Hua ZHOU Chang-Yong. Early Cretaceous magma mixing in Ranwu Area of Eastern Gangdese, Tibet: Evidence from zircon SHRIMP U-Pb age and Hf isotopic composition [J]. Earth Science Frontiers, 2009, 16(2): 152-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||