Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 77-94.DOI: 10.13745/j.esf.sf.2023.12.21
Previous Articles Next Articles
WAN Yusheng1(), DONG Chunyan1, XIE Hangqiang1, LI Pengchuan2, LIU Shoujie1, LI Yuan3, WANG Yuqing1, WANG Kunli1, LIU Dunyi1
Received:
2023-11-06
Revised:
2023-12-20
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WAN Yusheng, DONG Chunyan, XIE Hangqiang, LI Pengchuan, LIU Shoujie, LI Yuan, WANG Yuqing, WANG Kunli, LIU Dunyi. Neoarchean magmatism in the North China Craton: Implication for tectonic regimes and cratonization[J]. Earth Science Frontiers, 2024, 31(1): 77-94.
[1] |
CONDIE K C. Episodic continental growth models: afterthoughts and extensions[J]. Tectonophysics, 2000, 322(1): 153-162.
DOI URL |
[2] |
CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242.
DOI URL |
[3] | 沈其韩, 耿元生, 宋彪, 等. 华北和扬子陆块及秦岭—大别造山带地表和深部太古宙基底的新信息[J]. 地质学报, 2005, 79(5): 616-627. |
[4] |
ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
DOI URL |
[5] |
ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
DOI URL |
[6] | WAN Y S, LIU D Y, DONG C Y, et al. Formation and evolution of Archean continental crust of the North China Craton[M]//ZHAI M G. Precambrian geology of China. Singapore: Springer, 2015: 59-136. |
[7] |
JAYANANDA M, MOYEN J F, MARTIN H, et al. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, southern India: constraints from geochronology, Nd-Sr isotopes and wholerock geochemistry[J]. Precambrian Research, 2000, 99(3/4): 225-254.
DOI URL |
[8] |
DRÜPPEL K, MCCREADY A J, STUMPFL E F. High-K granites of the Rum Jungle Complex, N-Australia: insights into the Late Archean crustal evolution of the North Australian Craton[J]. Lithos, 2009, 111(3/4): 203-219.
DOI URL |
[9] |
CLARK C, COLLINS A S, TIMMS N E, et al. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India[J]. Gondwana Research, 2009, 16(1): 27-36.
DOI URL |
[10] |
LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20(4): 339-342.
DOI URL |
[11] |
MA Q, XU Y G, HUANG X L, et al. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: evidence from U-Pb and Hf-O isotopes of zircons from deepcrustal xenoliths[J]. Geochimica et Cosmochimica Acta, 2020, 278: 94-109.
DOI URL |
[12] | 万渝生, 颉颃强, 王惠初, 等. 冀东地区-3.8 Ga TTG岩石发现[J]. 地质学报, 2021, 95(5): 1321-1333. |
[13] | 万渝生, 董春艳, 颉颃强, 等. 华北克拉通新太古代早期—中太古代晚期(2.6-3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 2022, 28(5): 866-906. |
[14] | 万渝生, 颉颃强, 董春艳, 等. 华北克拉通太古宙构造热事件时代及演化: 综述[J]. 地球科学, 2020, 45(9): 3119-3160. |
[15] |
WAN Y S, DONG C Y, XIE H Q, et al. Hadean to early Mesoarchean rocks and zircons in the North China Craton: a review[J]. Earth-Science Reviews, 2023, 243: 104489.
DOI URL |
[16] |
MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215-224.
DOI URL |
[17] | BARKER F. Trondhjemite: definition, environment and hypotheses of origin[M]//BARKER F. Trondhjemites, dacites, and related rocks. Amsterdam: Elsevier, 1979: 1-12. |
[18] |
BARKER F, ARTH J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 4: 596-600.
DOI URL |
[19] |
MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101: 635-643.
DOI URL |
[20] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]// SAUNDERS A D, NORRY M J. Magmatism in the ocean basins. London: Geological Society of London, Special Publication, 1989: 313-345. |
[21] | PEARCE J A. The role of sub-continental lithosphere in magma genesis at active continental margins[C]// HAWKESWORTH C J, NORRY M J. Continental basalts and mantle xenoliths. Cambridge: Shiva Publish Limited, 1983: 230-249. |
[22] |
MOYEN J F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 123(1/2/3/4): 21-36.
DOI URL |
[23] |
WINTHER, T K, NEWTON, R C. Experimental melting of a hydrous low-K tholeiite: evidence on the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark, 1991, 39: 213-228.
DOI URL |
[24] |
LIOU P, GOU J H. Generation of Archaean TTG gneisses through amphibole-dominated fractionation[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 3605-3619.
DOI URL |
[25] |
WAN Y S, MA M Z, DONG C Y, et al. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes[J]. American Journal of Science, 2015, 315: 620-670.
DOI URL |
[26] |
VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150, 561-580.
DOI URL |
[27] |
WAN Y S, DONG C Y, LIU Y D, et al. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review[J]. Precambrian Research, 2012, 222/223: 265-289.
DOI URL |
[28] |
LAURENT O, BJORNSEN J, WOTZLAW, J F, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 13: 163-169.
DOI |
[29] |
LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205: 208-235.
DOI URL |
[30] |
PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.
DOI URL |
[31] | MOYEN J F, STEVENS G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[C]// BENN K, MARESCHAL J C, Condie K C. Archean geodynamics and environments. Washington: AGU, 2006, 149-178. |
[32] |
XIONG X, KEPPLER H, AUDÉTAT A, et al. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis[J]. American Mineralogist, 2009, 94: 1175-1186.
DOI URL |
[33] |
WU F Y, ZHAO G C, WILDE S A, et al. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5): 523-545.
DOI URL |
[34] |
GENG Y S, DU L L, REN L D. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21(2/3): 517-529.
DOI URL |
[35] | 万渝生. 太古宙早期陆核和新太古代陆壳巨量生长[M]//翟明国, 张连昌, 陈斌. 华北克拉通前寒武纪重大地质事件与成矿. 北京: 科学出版社, 2018: 39-55. |
[36] | LIU F, GUO J H, LU X P, et al. Crustal growth at -2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane[J]. Chinese Science Bulletin, 2009, 54(24): 4704-4713. |
[37] |
LIOU P, GUO J H, PENG P, et al. Crustal growth of the North China Craton at ca. 2.5 Ga[J]. Science Bulletin, 2022, 67: 1553-1555.
DOI URL |
[38] |
DIWU C R, SUN Y, GUO A L, et al. Crustal growth in the North China Craton at 2.5 Ga: evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng Complex[J]. Gondwana Research, 2011, 20: 149-170.
DOI URL |
[39] | 伍家善, 耿元生, 沈其韩, 等. 中朝古大陆太古宙地质特征及构造演化[M]. 北京: 地质出版社, 1998: 1-212. |
[40] |
LI Y L, ZHENG J P, XIAO W J, et al. Circa 2.5 Ga granitoids in the eastern North China craton: melting from ca. 2.7 Ga accretionary crust[J]. GSA Bulletin, 2020, 132(3/4): 817-834.
DOI URL |
[41] |
KEMP A I S, WILDE S A, HAWKESWORTH C J, et al. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 45-56.
DOI URL |
[42] |
WAN Y S, LIU S J, SONG Z Y, et al. The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: geology, geochemistry and SHRIMP U-Pb zircon dating[J]. American Journal of Science, 2021, 321: 1-82.
DOI URL |
[43] |
BAI W Q, DONG C Y, SONG Z Y, et al. Late Neoarchean granites in the Qixingtai region, western Shandong: further evidence for the recycling of early Neoarchean juvenile crust in the North China Craton[J]. Geological Journal, 2020, 55(9): 6462-6486.
DOI URL |
[44] | 李源, 颉颃强, 董春艳, 等. 鲁西沂山地区新太古代晚期高级深熔混合岩的源区特征[J]. 岩石学报, 2022, 38(3): 598-618. |
[45] | LI Y, XIE H Q, DONG C Y, et al. Zircon evolution from migmatite to crustally-derived granite: a case study of late Neoarchean migmatite in the Yishan area, western Shandong, North China Craton[J]. Gandwana Research, 2022, 112: 82-104. |
[46] | 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 2020, 36: 2249-2275. |
[47] | LI J H, KUSKY T M, HUANG X N. Archean podiform chromitites and mantle tectonites in ophiolitic mélange, North China Craton: a record of early oceanic mantle processes[J]. GSA Today, 2002, 12: 4-11. |
[48] |
GENG Y S, LIU F L, YANG C H. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication[J]. Acta Geologica Sinica (English Edition), 2006, 80: 819-833.
DOI URL |
[49] |
POLAT A, LI J, FRYER B, et al. Geochemical characteristics of the Neoarchean (2800-2700 Ma)Taishan greenstone belt, North China Craton: evidence for plume-craton interaction[J]. Chemical Geology, 2006, 230(1/2): 60-87.
DOI URL |
[50] |
JAHN B M, LIU D Y, WAN Y S, et al. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308: 232-269.
DOI URL |
[51] |
YANG J H, WU F Y, WILDE S A, et al. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd-Hf isotopic evidence[J]. Precambrian Research, 2008, 167: 125-149.
DOI URL |
[52] |
NUTMAN A P, WAN Y S, DU L L, et al. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei[J]. Precambrian Research, 2011, 189: 43-65.
DOI URL |
[53] |
WANG W, LIU S W, SANTOSH M, et al. Neoarchean intraoceanic arc system in the Western Liaoning Province: implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton[J]. Earth-Science Reviews, 2015, 150: 329-364.
DOI URL |
[54] |
WANG C, SONG S, NIU Y, et al. TTG and potassic Granitoids in the eastern North China Craton: making Neoarchean upper continental crust during micro-continental collision and post-collisional extension[J]. Journal of Petrology, 2016, 57(9): 1775-1810.
DOI URL |
[55] | WAN Y S, LIU S J, XIE H Q, et al. Formation and evolution of the Archean continental crust of China: a review[J]. China Geology, 2018, 1: 107-136. |
[56] |
SUN G Z, LIU S W, GAO L, et al. Origin of late Neoarchean granitoid diversity in the Western Shandong Province, North China Craton[J]. Precambrian Research, 2020, 339: 105620.
DOI URL |
[57] |
WANG C, SONG S G, SU L, et al. Crustal maturation and cratonization in response to Neoarchean continental collision: the Suizhong granitic belt, North China Craton[J]. Precambrian Research, 2022, 377: 106732.
DOI URL |
[58] |
ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136: 177-202.
DOI URL |
[59] |
WAN Y S, LIU D Y, WANG S J, et al. Juvenile magmatism and crustal recycling at the end of Neoarchean in western Shandong Province, North China Craton: evidence from SHRIMP zircon dating[J]. American Journal of Science, 2010, 310: 1503-1552.
DOI URL |
[60] |
XIE H Q, WAN Y S, DONG C Y, et al. Zircon U-Pb-Hf isotopes and geochemistry of late Neoarchean granitoids in southwestern Liaoning Province, North China Craton: petrogenesis and tectonic implications[J]. Gondwana Research, 2019, 70: 171-200.
DOI URL |
[61] | WAN Y S, LIU D Y, XIE H Q, et al. Formation ages and environments of early Precambrian banded iron formation in the North China Craton[M]//ZHAI M G. Main tectonic events and metallogeny of the North China Craton. Berlin: Springer, 2016: 65-83. |
[62] | 万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP 锆石U-Pb定年[J]. 地质学报, 2012, 86: 1447-1478. |
[63] | 张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展和问题[J]. 岩石学报, 2012, 28: 3431-3445. |
[64] | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41: 1037-1046. |
[65] | 翟明国, 张艳斌, 李秋立, 等. 克拉通下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37: 1-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||